ALMOST AUTOMORPHIC MILD SOLUTIONS OF HYPERBOLIC EVOLUTION EQUATIONS WITH STEPANOV-LIKE ALMOST AUTOMORPHIC FORCING TERM

被引:0
作者
Mishra, Indira [1 ]
Bahuguna, Dhirendra [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Almost automorphic; evolution equation; hyperbolic semigroups; extrapolation spaces; interpolation spaces; neutral differential equation; mild solution;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article concerns the existence and uniqueness of almost automorphic solutions to the semilinear parabolic boundary differential equations x'(t) A(m)x(t) + f(t, x(t)), t is an element of R, Lx(t) = phi(t, x(t)), t is an element of R, where A := A(m vertical bar ker) (L) generates a hyperbolic analytic semigroup on a Banach space X, with Stepanov-like almost automorphic nonlinear term, defined on some extrapolated space X alpha-1, for 0 < alpha < 1 and phi takes values in the boundary space delta X.
引用
收藏
页数:11
相关论文
共 15 条
[1]  
[Anonymous], ATTI ACCAD NAZ LINCE
[2]  
[Anonymous], 1995, Analytic semigroups and optimal regularity in parabolic problems
[3]   Almost periodic and almost automorphic solutions to semilinear parabolic boundary differential equations [J].
Baroun, M. ;
Maniar, L. ;
N'Guerekata, G. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (07) :2114-2124
[4]   Almost automorphic solutions for semilinear boundary differential equations [J].
Boulite, S. ;
Maniar, L. ;
N'Guerekata, G. M. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (12) :3613-3624
[5]  
Diagana T., 2012, ELECTRON J DIFFER EQ, V2012, P1
[6]   Stepanov-like almost automorphic functions and applications to some semilinear equations [J].
Diagana, Toka ;
N'Guerekata, Gaston M. .
APPLICABLE ANALYSIS, 2007, 86 (06) :723-733
[7]  
Diagana T, 2010, ELECTRON J QUAL THEO, P1
[8]  
Engel K.J., 1974, GRADUATE TEXTS MATH
[9]  
GREINER G, 1987, HOUSTON J MATH, V13, P213
[10]   The Fredholm alternative for parabolic evolution equations with inhornogeneous boundary conditions [J].
Maniar, Lahcen ;
Schnaubelt, Roland .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (01) :308-339