Electric field calculations in brain stimulation based on finite elements: An optimized processing pipeline for the generation and usage of accurate individual head models

被引:313
作者
Windhoff, Mirko [1 ]
Opitz, Alexander [1 ]
Thielscher, Axel [1 ]
机构
[1] MPI Biol Cybernet, High Field Magnet Resonance Ctr, Tubingen, Germany
关键词
transcranial magnetic stimulation; transcranial direct current stimulation; electric field calculation; structural magnetic resonance imaging; TRANSCRANIAL MAGNETIC STIMULATION; SURFACE-BASED ANALYSIS; IN-VIVO MEASUREMENT; MOTOR THRESHOLD; TISSUE; CORTEX; TMS; CONDUCTIVITY; DISTANCE; FOCALITY;
D O I
10.1002/hbm.21479
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The need for realistic electric field calculations in human noninvasive brain stimulation is undisputed to more accurately determine the affected brain areas. However, using numerical techniques such as the finite element method (FEM) is methodologically complex, starting with the creation of accurate head models to the integration of the models in the numerical calculations. These problems substantially limit a more widespread application of numerical methods in brain stimulation up to now. We introduce an optimized processing pipeline allowing for the automatic generation of individualized high-quality head models from magnetic resonance images and their usage in subsequent field calculations based on the FEM. The pipeline starts by extracting the borders between skin, skull, cerebrospinal fluid, gray and white matter. The quality of the resulting surfaces is subsequently improved, allowing for the creation of tetrahedral volume head meshes that can finally be used in the numerical calculations. The pipeline integrates and extends established (and mainly free) software for neuroimaging, computer graphics, and FEM calculations into one easy-to-use solution. We demonstrate the successful usage of the pipeline in six subjects, including field calculations for transcranial magnetic stimulation and transcranial direct current stimulation. The quality of the head volume meshes is validated both in terms of capturing the underlying anatomy and of the well-shapedness of the mesh elements. The latter is crucial to guarantee the numerical robustness of the FEM calculations. The pipeline will be released as open-source, allowing for the first time to perform realistic field calculations at an acceptable methodological complexity and moderate costs. Hum Brain Mapp, 2013. (c) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:923 / 935
页数:13
相关论文
共 39 条
[1]  
Attene M, 2006, IEEE INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS 2006, PROCEEDINGS, P271
[2]   A lightweight approach to repairing digitized polygon meshes [J].
Attene, Marco .
VISUAL COMPUTER, 2010, 26 (11) :1393-1406
[3]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[4]   AN ACCURATE 3-D MODEL FOR MAGNETIC STIMULATION OF THE BRAIN CORTEX [J].
CERRI, G ;
DELEO, R ;
MOGLIE, F ;
SCHIAVONI, A .
JOURNAL OF MEDICAL ENGINEERING & TECHNOLOGY, 1995, 19 (01) :7-16
[5]   Cortical surface-based analysis - I. Segmentation and surface reconstruction [J].
Dale, AM ;
Fischl, B ;
Sereno, MI .
NEUROIMAGE, 1999, 9 (02) :179-194
[6]   Modeling of the Human Skull in EEG Source Analysis [J].
Dannhauer, Moritz ;
Lanfer, Benjamin ;
Wolters, Carsten H. ;
Knoesche, Thomas R. .
HUMAN BRAIN MAPPING, 2011, 32 (09) :1383-1399
[7]   Transcranial direct current stimulation in patients with skull defects and skull plates: High-resolution computational FEM study of factors altering cortical current flow [J].
Datta, Abhishek ;
Bikson, Marom ;
Fregni, Felipe .
NEUROIMAGE, 2010, 52 (04) :1268-1278
[8]   ANISOTROPY IN THE DIELECTRIC-PROPERTIES OF SKELETAL-MUSCLE [J].
EPSTEIN, BR ;
FOSTER, KR .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1983, 21 (01) :51-55
[9]   Cortical surface-based analysis - II: Inflation, flattening, and a surface-based coordinate system [J].
Fischl, B ;
Sereno, MI ;
Dale, AM .
NEUROIMAGE, 1999, 9 (02) :195-207
[10]   Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities [J].
Geuzaine, Christophe ;
Remacle, Jean-Francois .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (11) :1309-1331