Constructive Solutions to the Riemann-Hilbert Problem and Middle Convolution

被引:1
作者
Bibilo, Yulia [1 ]
Filipuk, Galina [2 ]
机构
[1] Russian Acad Sci, Inst Informat Transmiss Problems, Bolshoy Karetny Per 19, Moscow 127994, Russia
[2] Univ Warsaw, Dept Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
Fuchsian systems; Monodromy; Riemann-Hilbert problem; Middle convolution; EQUATIONS;
D O I
10.1007/s10883-015-9306-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a general scheme to generate constructive solutions to the Riemann-Hilbert problem via middle convolution and illustrate this approach for a Fuchsian system with four singular points.
引用
收藏
页码:55 / 70
页数:16
相关论文
共 20 条
[1]  
Amelkin VV, 2013, SCI PUBLICATIONS S A, V5, P7
[2]  
Anosov DV, 1994, ASPECTS MATH, pE22
[3]  
Boalch P, 2007, IRMA LECT MATH THEOR, V9, P85
[4]  
Bolibruch A. A., 2009, Inverse Monodromy Problems in the Analytic Theory of Differential Equations
[5]   Differential equations with meromorphic coefficients [J].
Bolibrukh, A. A. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 272 :S13-S43
[6]   An algorithm of Katz and its application to the inverse Galois problem [J].
Dettweiler, M ;
Reiter, S .
JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (06) :761-798
[7]   Middle convolution of Fuchsian systems and the construction of rigid differential systems [J].
Dettweiler, Michael ;
Reiter, Stefan .
JOURNAL OF ALGEBRA, 2007, 318 (01) :1-24
[8]   Painleve' equations and the middle convolution [J].
Dettweiler, Michael ;
Reiter, Stefan .
ADVANCES IN GEOMETRY, 2007, 7 (03) :317-330
[9]  
Erugin N. P, 1982, Riemann Problem
[10]  
Erugin N. P., 1976, DIFF EQUAT+, V12, P779