Error analysis of mixed finite elements for cylindrical shells

被引:0
作者
Yang, G
Delfour, MC
Fortin, M
机构
[1] UNIV MONTREAL,CTR RECH MATH,MONTREAL,PQ H3C 3J7,CANADA
[2] CTR RECH CALCUL APPL,MONTREAL,PQ H3X 2H9,CANADA
[3] UNIV MONTREAL,DEPT MATH & STAT,MONTREAL,PQ H3C 3J7,CANADA
[4] UNIV LAVAL,DEPT MATH & STAT,QUEBEC CITY,PQ G1K 7P4,CANADA
关键词
shell; locking; mixed finite element; macroelement; uniform convergence;
D O I
10.1023/A:1018998903567
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the Naghdi shell model, we analyze the uniform convergence of mixed finite element methods for cylindrical shell problems using macroelement techniques. We show that Taylor-Hood elements P-2 - P-1 and P-1 iso P-2 are locking free elements for the model problems. Optimal error estimates are presented with these elements.
引用
收藏
页码:261 / 277
页数:17
相关论文
共 15 条
[1]   A UNIFORMLY ACCURATE FINITE-ELEMENT METHOD FOR THE REISSNER-MINDLIN PLATE [J].
ARNOLD, DN ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1276-1290
[2]  
ARNOLD DN, 1993, 127 AM PENNS STAT U
[3]  
BERNADOU M, 1994, METHODES ELEMENTS FI
[4]   MIXED-INTERPOLATED ELEMENTS FOR REISSNER-MINDLIN PLATES [J].
BREZZI, F ;
BATHE, KJ ;
FORTIN, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 28 (08) :1787-1801
[5]  
BREZZI F, 1986, MATH COMPUT, V47, P151, DOI 10.1090/S0025-5718-1986-0842127-7
[6]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[7]  
CLEMENT P, 1975, RAIRO ANAL NUMER, V9, P33
[8]   ON MIXED FINITE-ELEMENT METHODS FOR THE REISSNER-MINDLIN PLATE MODEL [J].
DURAN, R ;
LIBERMAN, E .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :561-573
[9]  
KIRMSE A, 1993, SIAM J NUMER ANAL, V300, P1015
[10]  
LEINO Y, 1994, INT J NUMER METH ENG, V37, P1057