A galerkin projection method for mixed finite elements

被引:54
作者
Geuzaine, C [1 ]
Meys, B [1 ]
Henrotte, F [1 ]
Dular, P [1 ]
Legros, W [1 ]
机构
[1] Univ Liege, Inst Montefiore, Dept Elect Engn, B-4000 Liege, Belgium
关键词
finite element methods; interpolation; polynomial approximation; modeling;
D O I
10.1109/20.767236
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of the proposed method is the projection of a field belonging to a given function space (continuous or not) onto a discrete one spanned by finite element basis functions. This technique is useful for imposing inhomogeneous boundary conditions or volumic source fields, for calculating a dual field given the primal one or for mesh to mesh interpolation.
引用
收藏
页码:1438 / 1441
页数:4
相关论文
共 13 条
[1]   Comparison of various kinds of edge elements for electromagnetic field analysis [J].
Ahagon, A ;
Fujiwara, K ;
Nakata, T .
IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (03) :898-901
[2]  
[Anonymous], 1994, ELECTROSTATICS OPTIC
[3]  
BOSSAVIT A., 1988, Physical Science, Measurement and Instrumentation, Management and Education - Reviews, IEE Proceedings A, V135, P493
[4]   A pyramidal element to link hexahedral, prismatic and tetrahedral edge finite elements [J].
Coulomb, JL ;
Zgainski, FX ;
Marechal, Y .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) :1362-1365
[5]   A generalized source magnetic field calculation method for inductors of any shape [J].
Dular, P ;
Henrotte, F ;
Robert, F ;
Genon, A ;
Legros, W .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) :1398-1401
[6]   MIXED FINITE-ELEMENTS ASSOCIATED WITH A COLLECTION OF TETRAHEDRON, HEXAHEDRA AND PRISMS [J].
DULAR, P ;
HODY, JY ;
NICOLET, A ;
GENON, A ;
LEGROS, W .
IEEE TRANSACTIONS ON MAGNETICS, 1994, 30 (05) :2980-2983
[7]  
Johnson C., 1987, Numerical Solution of Partial Differemtial Equations by the Finite Element Method
[8]  
Manges JB, 1997, INT J NUMER METH ENG, V40, P1667, DOI 10.1002/(SICI)1097-0207(19970515)40:9<1667::AID-NME133>3.0.CO
[9]  
2-9
[10]  
MIDTGARD OM, 1997, P 11 COMPUMAG C RIO, P783