Twelve limit cycles around a singular point in a planar cubic-degree polynomial system

被引:42
作者
Yu, Pei [1 ]
Tian, Yun [1 ]
机构
[1] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Hilbert's 16th problem; Cubic planar system; Center; Limit cycle; Bifurcation; Focus value; BIFURCATIONS; COMPUTATION;
D O I
10.1016/j.cnsns.2013.12.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence of 12 small-amplitude limit cycles around a singular point in a planar cubic-degree polynomial system. Based on two previously developed cubic systems in the literature, which have been proved to exhibit 11 small-amplitude limit cycles, we applied a different method to show 11 limit cycles. Moreover, we show that one of the systems can actually have 12 small-amplitude limit cycles around a singular point. This is the best result so far obtained in cubic planar vector fields around a singular point. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:2690 / 2705
页数:16
相关论文
共 26 条
[1]  
[Anonymous], 2006, TRENDS MATH DIFFEREN
[2]  
[Anonymous], 1952, Mat. sb
[3]  
[Anonymous], 2006, HDB DIFFERENTIAL EQU
[4]  
[Anonymous], INT J BIFUR CHAOS
[5]  
[Anonymous], 13113381V2 ARXIV
[6]  
[Anonymous], 2010, Qual. Theo. Dyna. Syst., DOI DOI 10.1007/S12346-010-0024-7)
[7]  
Arnold V.I., 1983, Geometrical methods in the theory of ordinary differential equations, DOI DOI 10.1007/978-1-4684-0147-9
[8]   On a Zoladek theorem [J].
Bondar, Yu. L. ;
Sadovskii, A. P. .
DIFFERENTIAL EQUATIONS, 2008, 44 (02) :274-277
[9]   AN APPLICATION OF REGULAR CHAIN THEORY TO THE STUDY OF LIMIT CYCLES [J].
Chen, Changbo ;
Corless, Robert M. ;
Maza, Marc Moreno ;
Yu, Pei ;
Zhang, Yiming .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (09)
[10]  
Chen L., 1979, Acta Math. Sin., V22, P751