Robust chaos synchronization of four-dimensional energy resource systems subject to unmatched uncertainties

被引:43
作者
Huang, Cheng-Fang [1 ]
Cheng, Kuo-Hua [1 ]
Yan, Jun-Juh [1 ]
机构
[1] Shu Te Univ, Dept Comp & Commun, Kaohsiung 824, Taiwan
关键词
Energy resource system; Sliding mode control; Chaos synchronization; Perturbation; SLIDING MODE CONTROL; ADAPTIVE SYNCHRONIZATION; IMPULSIVE CONTROL;
D O I
10.1016/j.cnsns.2008.09.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the robust chaos synchronization problem for the four-dimensional energy resource systems. Based on the sliding mode control (SMC) technique, this approach only uses a single controller to achieve chaos synchronization, which reduces the cost and complexity for synchronization control implementation. As expected, the error states can be driven to zero or into predictable bounds for matched and unmatched perturbations, respectively. Numerical simulation results. which fully coincide with theoretical results, are presented to demonstrate the obtained results. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2784 / 2792
页数:9
相关论文
共 30 条
[1]   NONLINEAR OSCILLATIONS IN POWER-SYSTEMS [J].
ABED, EH ;
VARAIYA, PP .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1984, 6 (01) :37-43
[2]  
Bowong S, 2007, COMMUN NONLINEAR SCI, V12, P976, DOI [10.1016/j.cnsns.2005.10.003, 10.1016/j.cnsns.2004.12.008]
[3]   Adaptive synchronization of neural networks with or without time-varying delay [J].
Cao, JD ;
Lu, JQ .
CHAOS, 2006, 16 (01)
[4]   Dynamic analysis, controlling chaos and chaotification of a SMIB power system [J].
Chen, HK ;
Lin, TN ;
Chen, JH .
CHAOS SOLITONS & FRACTALS, 2005, 24 (05) :1307-1315
[5]   A new observer-based synchronization scheme for private communication [J].
Chen, MY ;
Zhou, DH ;
Shang, Y .
CHAOS SOLITONS & FRACTALS, 2005, 24 (04) :1025-1030
[6]   Impulsive control and synchronization of unified chaotic system [J].
Chen, SH ;
Yang, Q ;
Wang, CP .
CHAOS SOLITONS & FRACTALS, 2004, 20 (04) :751-758
[7]   Anti-synchronization of uncertain unified chaotic systems with dead-zone nonlinearity [J].
Chiang, Tsung-Ying ;
Lin, Jui-Sheng ;
Liao, Teh-Lu ;
Yan, Jun-Juh .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (09) :2629-2637
[8]   Melnikov analysis of chaos in a general epidemiological model [J].
Diallo, Ouateni ;
Kone, Yaya .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (01) :20-26
[9]   Dynamical adaptive synchronization [J].
Efimov, D. V. .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2006, 20 (09) :491-507
[10]   Effective chaotic orbit tracker: A prediction-based digital redesign approach [J].
Guo, SM ;
Shieh, LS ;
Chen, GR ;
Lin, CF .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2000, 47 (11) :1557-1570