A nonparametric statistical technique for combining global precipitation datasets: development and hydrological evaluation over the Iberian Peninsula

被引:76
作者
Bhuiyan, Md Abul Ehsan [1 ]
Nikolopoulos, Efthymios I. [1 ,2 ]
Anagnostou, Emmanouil N. [1 ]
Quintana-Segui, Pere [3 ]
Barella-Ortiz, Anais [3 ,4 ]
机构
[1] Univ Connecticut, Dept Civil & Environm Engn, Storrs, CT USA
[2] Innovat Technol Ctr SA, Athens, Greece
[3] Ramon Llull Univ, CSIC, Ebro Observ, Roquetes, Tarragona, Spain
[4] Castilla La Mancha Univ, Toledo, Spain
关键词
PASSIVE-MICROWAVE; ERROR MODEL; LAND; PRODUCTS; RAINFALL; SAFRAN; VALIDATION; PARAMETERIZATION; UNCERTAINTIES; REANALYSIS;
D O I
10.5194/hess-22-1371-2018
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study investigates the use of a nonparametric, tree-based model, quantile regression forests (QRF), for combining multiple global precipitation datasets and characterizing the uncertainty of the combined product. We used the Iberian Peninsula as the study area, with a study period spanning 11 years (2000-2010). Inputs to the QRF model included three satellite precipitation products, CMORPH, PERSIANN, and 3B42 (V7); an atmospheric reanalysis precipitation and air temperature dataset; satellite-derived nearsurface daily soil moisture data; and a terrain elevation dataset. We calibrated the QRF model for two seasons and two terrain elevation categories and used it to generate ensemble for these conditions. Evaluation of the combined product was based on a high-resolution, ground-reference precipitation dataset (SAFRAN) available at 5 km1 h(-1) resolution. Furthermore, to evaluate relative improvements and the overall impact of the combined product in hydrological response, we used the generated ensemble to force a distributed hydrological model (the SURFEX land surface model and the RAPID river routing scheme) and compared its streamflow simulation results with the corresponding simulations from the individual global precipitation and reference datasets. We concluded that the proposed technique could generate realizations that successfully encapsulate the reference precipitation and provide significant improvement in streamflow simulations, with reduction in systematic and random error on the order of 20-99 and 44-88 %, respectively, when considering the ensemble mean.
引用
收藏
页码:1371 / 1389
页数:19
相关论文
共 74 条
[1]  
Adler RF, 2001, B AM METEOROL SOC, V82, P1377, DOI 10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO
[2]  
2
[3]   Accounting for Uncertainties of the TRMM Satellite Estimates [J].
AghaKouchak, Amir ;
Nasrollahi, Nasrin ;
Habib, Emad .
REMOTE SENSING, 2009, 1 (03) :606-619
[4]  
Alvarez J., 2004, P FOSS GRASS US C
[5]   A Nonparametric Statistical Technique for Modeling Overland TMI (2A12) Rainfall Retrieval Error [J].
Bhuiyan, M. A. E. ;
Anagnostou, E. N. ;
Kirstetter, P. -E. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (11) :1898-1902
[6]   Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model [J].
Bitew, Menberu M. ;
Gebremichael, Mekonnen .
WATER RESOURCES RESEARCH, 2011, 47
[7]  
Boone A., 2000, Modelisation des processus hydrologiques dans le schema de surface isba: Inclusion d'un reservoir hydrologique, du gel et modelisation de la neige
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   A Nonparametric Postprocessor for Bias Correction of Hydrometeorological and Hydrologic Ensemble Forecasts [J].
Brown, James D. ;
Seo, Dong-Jun .
JOURNAL OF HYDROMETEOROLOGY, 2010, 11 (03) :642-665
[10]   ECOCLIMAP: a global database of land surface parameters at 1 km resolution [J].
Champeaux, JL ;
Masson, V ;
Chauvin, R .
METEOROLOGICAL APPLICATIONS, 2005, 12 (01) :29-32