About algorithm of robust nonparametric estimation of regression function on observations

被引:2
|
作者
Denisov, M. A. [1 ]
Chzhan, E. A. [1 ]
Korneeva, A. A. [1 ]
Kukartsev, V. V. [1 ,2 ]
机构
[1] Siberian Fed Univ, Inst Space & Informat Technol, Krasnoyarsk 660074, Russia
[2] Siberian State Aerosp Univ, Krasnoyarskiy Rabochiy Ave 31, Krasnoyarsk 660037, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1088/1757-899X/450/4/042001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The field of research presented in the paper is aimed at studying the methods of robust statistics for the modeling of multidimensional processes of discrete-continuous type. The model of the investigated process is constructed using identification methods. In one case, it is used parametric methods of identification where priori information about the object of research is sufficient to build the model accurate within vector of parameters. The second case is specific to lack of priori information. The researchers do not know the structure of the model and represent the object in the form of a "black box", therefore, nonparametric identification methods could be used. The accuracy of models is estimated using a relative error of approximation, which shows how much the model output value corresponds to the output value of the object. The paper proposes a new method of outliers' detection in the initial sample of observations, which is subsequently used for parametric and nonparametric identification of processes. The developed robust algorithm is applied to both types of models in order to determine in which case accuracy of outliers' detection is higher. In addition, the above algorithm is compared with an algorithm based on the interquartile range.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] ROBUST NONPARAMETRIC REGRESSION ESTIMATION FOR DEPENDENT OBSERVATIONS
    BOENTE, G
    FRAIMAN, R
    ANNALS OF STATISTICS, 1989, 17 (03): : 1242 - 1256
  • [2] ROBUST NONPARAMETRIC-ESTIMATION OF A REGRESSION FUNCTION
    CHENG, KF
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES B, 1987, 49 : 9 - 22
  • [3] NONPARAMETRIC-ESTIMATION OF A REGRESSION FUNCTION WITH DEPENDENT OBSERVATIONS
    WU, JS
    CHU, CK
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 50 (01) : 149 - 160
  • [4] Nonparametric estimation of the regression function from quantized observations
    Benhenni, K.
    Rachdi, M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (11) : 3067 - 3085
  • [5] ROBUST NONPARAMETRIC REGRESSION ESTIMATION
    BOENTE, G
    FRAIMAN, R
    JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 29 (02) : 180 - 198
  • [6] Nonparametric robust regression function estimation from ergodic samples
    Laib, N
    OuldSaid, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (03): : 271 - 276
  • [7] Robust nonparametric estimation for spatial regression
    Gheriballah, Abdelkader
    Laksaci, Ali
    Rouane, Rachida
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) : 1656 - 1670
  • [8] Robust estimation for nonparametric generalized regression
    Bianco, Ana M.
    Boente, Graciela
    Sombielle, Susana
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (12) : 1986 - 1994
  • [9] NONPARAMETRIC ESTIMATION OF REGRESSION FUNCTION
    SABRY, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (20): : 941 - 944
  • [10] Estimation of nonparametric regression function
    Lungu, Ion
    Manole, Sorin
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2007, 41 (1-2): : 121 - 130