On Generalized Jordan Triple (α, β)*-Derivations and Related Mappings

被引:7
作者
Ali, Shakir [1 ]
Fosner, Ajda [2 ]
Fosner, Maja [3 ]
Khan, Mohammad Salahuddin [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] Univ Primorska, Fac Management, Koper 6104, Slovenia
[3] Univ Maribor, Fac Logist, Celje 3000, Slovenia
关键词
Semiprime (*)-ring; H*-algebra; Jordan triple (a; beta)*-derivation; generalized Jordan triple (a; Jordan triple left alpha*-centralizer; PRIME-RINGS; QUADRATIC FUNCTIONALS; SEMIPRIME RINGS; DERIVATIONS;
D O I
10.1007/s00009-013-0277-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a 2-torsion free semiprime *-ring and let alpha, beta be surjective endomorphisms of R. The aim of the paper is to show that every generalized Jordan triple (alpha, beta)*-derivation on R is a generalized Jordan (alpha, beta)*-derivation. This result makes it possible to prove that every generalized Jordan triple (alpha, beta)*-derivation on a semisimple H*- algebra is a generalized Jordan (alpha, beta)*-derivation. Finally, we prove that every Jordan triple left alpha*-centralizer on a 2-torsion free semiprime ring is a Jordan left alpha*-centralizer.
引用
收藏
页码:1657 / 1668
页数:12
相关论文
共 25 条
[1]  
Ali S., 2010, INT J ALGEBRA, V4, P99
[2]  
Ali S., 2012, BEITR ALGEBRA GEOM, DOI [10.1007/s13366-012-0117-3, DOI 10.1007/S13366-012-0117-3.)]
[3]  
Ali S., 2012, B SOC PARNA MAT, V1, P32
[4]  
Ali S., 2011, E W J MATH, V13, P139
[5]   Jordan alpha-centralizers in rings and some applications [J].
Ali, Shakir ;
Haetinger, Claus .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2) :71-80
[7]   On Lie ideals and generalized (θ,φ)-derivations in prime rings [J].
Ashraf, M ;
Ali, A ;
Ali, S .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (08) :2977-2985
[8]   JORDAN MAPPINGS OF SEMIPRIME RINGS [J].
BRESAR, M .
JOURNAL OF ALGEBRA, 1989, 127 (01) :218-228
[9]   ON THE DISTANCE OF THE COMPOSITION OF 2 DERIVATIONS TO THE GENERALIZED DERIVATIONS [J].
BRESAR, M .
GLASGOW MATHEMATICAL JOURNAL, 1991, 33 :89-93
[10]  
Bresar M, 1989, AEQUATIONES MATH, V38, P178, DOI DOI 10.1007/BF01840003