Quantum speedup of Monte Carlo methods

被引:182
|
作者
Montanaro, Ashley [1 ]
机构
[1] Univ Bristol, Dept Comp Sci, Bristol, Avon, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2015年 / 471卷 / 2181期
基金
英国工程与自然科学研究理事会;
关键词
Monte Carlo methods; quantum algorithms; partition functions; ALGORITHMS;
D O I
10.1098/rspa.2015.0301
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Quantum Monte Carlo methods for nuclear physics
    Carlson, J.
    Gandolfi, S.
    Pederiva, F.
    Pieper, Steven C.
    Schiavilla, R.
    Schmidt, K. E.
    Wiringa, R. B.
    REVIEWS OF MODERN PHYSICS, 2015, 87 (03) : 1067 - 1118
  • [12] Quantum Monte Carlo methods in statistical mechanics
    Melik-Alaverdian, V
    Nightingale, MP
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (08): : 1409 - 1418
  • [13] ANTISYMMETRY IN QUANTUM MONTE-CARLO METHODS
    BIANCHI, R
    BRESSANINI, D
    CREMASCHI, P
    MOROSI, G
    COMPUTER PHYSICS COMMUNICATIONS, 1993, 74 (02) : 153 - 163
  • [14] Quantum Monte Carlo Methods for Constrained Systems
    Wolf, Sarah
    Curotto, Emanuele
    Mella, Massimo
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2014, 114 (10) : 611 - 625
  • [15] Bilinear diffusion quantum Monte Carlo methods
    de Saavedra, FA
    Kalos, MH
    PHYSICAL REVIEW E, 2003, 67 (02):
  • [16] BASIS QUANTUM MONTE-CARLO METHODS
    OKSUZ, I
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1984, 9 (03): : 239 - 249
  • [17] Review of quantum Monte Carlo methods and their applications
    Acioli, PH
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1997, 394 (2-3): : 75 - 85
  • [18] Quantum Monte Carlo Methods for Astrophysical Applications
    Tews, Ingo
    FRONTIERS IN PHYSICS, 2020, 8
  • [19] Monte Carlo methods for quantum field theory
    Kennedy, AD
    CHINESE JOURNAL OF PHYSICS, 2000, 38 (03) : 707 - 720
  • [20] Electronic structure calculations by quantum Monte Carlo methods
    Mitas, Lubos
    Physica B: Condensed Matter, 1997, 237-238 : 318 - 320