Quantum speedup of Monte Carlo methods

被引:183
作者
Montanaro, Ashley [1 ]
机构
[1] Univ Bristol, Dept Comp Sci, Bristol, Avon, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2015年 / 471卷 / 2181期
基金
英国工程与自然科学研究理事会;
关键词
Monte Carlo methods; quantum algorithms; partition functions; ALGORITHMS;
D O I
10.1098/rspa.2015.0301
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.
引用
收藏
页数:20
相关论文
共 46 条
  • [1] Aharonov D., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P20, DOI 10.1145/276698.276708
  • [2] Aharonov D., 2001, arXiv:quant-ph/0012090, P50, DOI [10.1145/380752.380758, DOI 10.1145/380752.380758]
  • [3] Adiabatic quantum state generation
    Aharonov, Dorit
    Ta-Shma, Amnon
    [J]. SIAM JOURNAL ON COMPUTING, 2007, 37 (01) : 47 - 82
  • [4] [Anonymous], 2003, Monte Carlo Methods in Financial Engineering
  • [5] [Anonymous], 2000, QUANTUM COMPUT QUANT
  • [6] Berry D, 2015, HAMILTONIAN SIMULATI
  • [7] Accelerating simulated annealing for the permanent and combinatorial counting problems
    Bezakova, Ivona
    Stefankovic, Daniel
    Vazirani, Vijay V.
    Vigoda, Eric
    [J]. SIAM JOURNAL ON COMPUTING, 2008, 37 (05) : 1429 - 1454
  • [8] Brassard G, 2011, OPTIMAL QUANTUM ALOG
  • [9] Quantum Algorithms for Testing Properties of Distributions
    Bravyi, Sergey
    Harrow, Aram W.
    Hassidim, Avinatan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (06) : 3971 - 3981
  • [10] Chiang CF, 2010, QUANTUM INF COMPUT, V10, P420