Reciprocal influence between the protein and lipid components of a lipid-protein membrane model

被引:52
|
作者
Diederich, A
Sponer, C
Pum, D
Sleytr, UB
Losche, M
机构
[1] UNIV MAINZ,INST PHYS CHEM,D-55099 MAINZ,GERMANY
[2] AGR UNIV VIENNA,ZENTRUM ULTRASTRUKTURFORSCH,A-1180 VIENNA,AUSTRIA
[3] AGR UNIV VIENNA,LUDWIG BOLTZMANN INST MOL NANOTECHNOL,A-1180 VIENNA,AUSTRIA
[4] UNIV LEIPZIG,FAK PHYS & GEOWISSENSCH,D-04103 LEIPZIG,GERMANY
基金
奥地利科学基金会;
关键词
2D protein crystallization; Langmuir monolayers; phase transitions; protein-lipid interaction; surface layer proteins;
D O I
10.1016/0927-7765(96)01267-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The crystallization of bacterial surface layer proteins (S-layer proteins) at phosphoethanolamine monolayers on aqueous (buffer) surfaces has been investigated with dual label fluorescence microscopy, FTIR spectroscopy, and electron microscopy. The phase state of the lipid exerts a marked influence on protein crystallization: when the surface monolayer is in the phase-separated state between the isotropic and anisotropic fluid phases, the S-layer protein is preferentially adsorbed at the isotropic phase. Protein crystals nucleate at the boundary lines between the coexisting lipid phases and crystallization proceeds underneath the anisotropic fluid. Crystal growth is much slower under the fluid lipid and the entire interface is overgrown only after prolonged protein incubation. In turn, as indicated by characteristic frequency shifts of the methylene stretch vibrations on the lipids, protein crystallization affects the order of the alkane chains and drives the fluid lipid into a state of higher order. Most probably, the protein does not interpenetrate the lipid surface monolayer and the coupling between protein and lipid occurs via the lipid head groups.
引用
收藏
页码:335 / 346
页数:12
相关论文
共 50 条
  • [31] LIPID-LIPID AND LIPID-PROTEIN INTERACTIONS IN MEMBRANES
    JOST, PC
    DRUG AND ALCOHOL DEPENDENCE, 1980, 6 (1-2) : 55 - 55
  • [32] LIPID-LIPID INTERACTIONS AND LIPID-PROTEIN INTERACTIONS
    STOFFEL, W
    FETTE SEIFEN ANSTRICHMITTEL, 1976, 78 (02): : 99 - 100
  • [33] PROTEIN HYDROPHOBICITY AND LIPID-PROTEIN INTERACTION
    DAVIS, MAF
    HAUSER, H
    LESLIE, RB
    PHILLIPS, MC
    BIOCHIMICA ET BIOPHYSICA ACTA, 1973, 317 (01) : 214 - 218
  • [34] Flexible surface model for lipid-protein interactions
    Eitel, Anna
    Fried, Steven
    Perera, Suchithranga
    Weerasinghe, Nipuna
    Norris, Carolanne
    Struts, Andrey
    Brown, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [35] LIPID-PROTEIN INTERACTIONS IN RECONSTITUTED MODEL LIPOPROTEINS
    VAUGHAN, DJ
    BRECKENRIDGE, WC
    STANACEV, NZ
    JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1982, 59 (04) : A277 - A277
  • [36] LIPID-LIPID AND LIPID-PROTEIN INTERACTIONS IN MEMBRANES
    JOST, PC
    GRIFFITH, OH
    PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR, 1980, 13 : 155 - 165
  • [37] LIPID-PROTEIN INTERACTIONS IN YEAST PLASMA-MEMBRANE
    SOLOMON, DJ
    TETER, MN
    ESFAHANI, M
    FEDERATION PROCEEDINGS, 1978, 37 (06) : 1394 - 1394
  • [38] Lipid-protein complexes in erythrocyte membrane in late gestosis
    Mikaelyan, NP
    Knyazev, YA
    Mikaelyan, AV
    Tareeva, TE
    Maksina, AG
    BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2001, 132 (01) : 678 - 681
  • [39] LIPID-PROTEIN INTERACTIONS IN ESCHERICHIA-COLI MEMBRANE
    RUDKIN, BB
    GROSSE, VA
    MCCRAY, JA
    ESFAHANI, M
    FEDERATION PROCEEDINGS, 1977, 36 (03) : 897 - 897
  • [40] Lipid-Protein Complexes in Erythrocyte Membrane in Late Gestosis
    N. P. Mikaelyan
    Yu. A. Knyazev
    A. V. Mikaelyan
    T. E. Tareeva
    A. G. Maksina
    Bulletin of Experimental Biology and Medicine, 2001, 132 : 678 - 681