Reciprocal influence between the protein and lipid components of a lipid-protein membrane model

被引:52
作者
Diederich, A
Sponer, C
Pum, D
Sleytr, UB
Losche, M
机构
[1] UNIV MAINZ,INST PHYS CHEM,D-55099 MAINZ,GERMANY
[2] AGR UNIV VIENNA,ZENTRUM ULTRASTRUKTURFORSCH,A-1180 VIENNA,AUSTRIA
[3] AGR UNIV VIENNA,LUDWIG BOLTZMANN INST MOL NANOTECHNOL,A-1180 VIENNA,AUSTRIA
[4] UNIV LEIPZIG,FAK PHYS & GEOWISSENSCH,D-04103 LEIPZIG,GERMANY
基金
奥地利科学基金会;
关键词
2D protein crystallization; Langmuir monolayers; phase transitions; protein-lipid interaction; surface layer proteins;
D O I
10.1016/0927-7765(96)01267-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The crystallization of bacterial surface layer proteins (S-layer proteins) at phosphoethanolamine monolayers on aqueous (buffer) surfaces has been investigated with dual label fluorescence microscopy, FTIR spectroscopy, and electron microscopy. The phase state of the lipid exerts a marked influence on protein crystallization: when the surface monolayer is in the phase-separated state between the isotropic and anisotropic fluid phases, the S-layer protein is preferentially adsorbed at the isotropic phase. Protein crystals nucleate at the boundary lines between the coexisting lipid phases and crystallization proceeds underneath the anisotropic fluid. Crystal growth is much slower under the fluid lipid and the entire interface is overgrown only after prolonged protein incubation. In turn, as indicated by characteristic frequency shifts of the methylene stretch vibrations on the lipids, protein crystallization affects the order of the alkane chains and drives the fluid lipid into a state of higher order. Most probably, the protein does not interpenetrate the lipid surface monolayer and the coupling between protein and lipid occurs via the lipid head groups.
引用
收藏
页码:335 / 346
页数:12
相关论文
共 38 条
  • [1] SPECIFIC INTERACTIONS OF PROTEINS WITH FUNCTIONAL LIPID MONOLAYERS - WAYS OF SIMULATING BIOMEMBRANE PROCESSES
    AHLERS, M
    MULLER, W
    REICHERT, A
    RINGSDORF, H
    VENZMER, J
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1990, 29 (11) : 1269 - 1285
  • [2] [Anonymous], 1996, Crystalline bacterial cell surface proteins
  • [3] BAUMEISTER W, 1987, ELECTRON MICROSCOPY, V6
  • [4] BACTERIAL S-LAYERS
    BEVERIDGE, TJ
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 1994, 4 (02) : 204 - 212
  • [5] BEVERIDGE TJ, 1993, ADV PARACRYSTALLINE
  • [6] A MONOLAYER PHASE MISCIBILITY COMPARISON OF LONG-CHAIN FATTY-ACIDS AND THEIR ETHYL-ESTERS
    BIBO, AM
    KNOBLER, CM
    PETERSON, IR
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (14) : 5591 - 5599
  • [7] BOHM C, 1993, BIOPHYS J, V64, P553, DOI 10.1016/S0006-3495(93)81386-9
  • [8] INFRARED EXTERNAL REFLECTION SPECTROSCOPIC STUDIES OF PHASE-TRANSITIONS IN LANGMUIR MONOLAYERS OF HENEICOSANOL
    BUONTEMPO, JT
    RICE, SA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) : 5835 - 5846
  • [9] INSITU MEASUREMENT OF THE INFRARED-SPECTRA OF INSOLUBLE MONOLAYERS AT THE AIR-WATER-INTERFACE
    DLUHY, RA
    CORNELL, DG
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1985, 89 (15) : 3195 - 3197
  • [10] CHARACTERIZATION OF COOPERATIVE CONFORMATIONAL TRANSITIONS BY FOURIER-TRANSFORM INFRARED-SPECTROSCOPY - APPLICATION TO PHOSPHOLIPID BINARY-MIXTURES
    DLUHY, RA
    MOFFATT, D
    CAMERON, DG
    MENDELSOHN, R
    MANTSCH, HH
    [J]. CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1985, 63 (07): : 1925 - 1933