On simple eigenvalues of the fractional Laplacian under removal of small fractional capacity sets

被引:8
作者
Abatangelo, Laura [1 ]
Felli, Veronica [1 ]
Noris, Benedetta [2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
[2] UPJV Univ Picardie Jules Verne, LAMFA Lab Amienois Math Fondamentale & Appl, 33 Rue St Len, F-80039 Amiens, France
关键词
Fractional Laplacian; asymptotics of eigenvalues; fractional capacity; UNIQUE CONTINUATION; MANIFOLDS; SPECTRUM; DOMAINS;
D O I
10.1142/S0219199719500718
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the eigenvalue problem for the restricted fractional Laplacian in a bounded domain with homogeneous Dirichlet boundary conditions. We introduce the notion of fractional capacity for compact subsets, with the property that the eigenvalues are not affected by the removal of zero fractional capacity sets. Given a simple eigenvalue, we remove from the domain a family of compact sets which are concentrating to a set of zero fractional capacity and we detect the asymptotic expansion of the eigenvalue variation; this expansion depends on the eigenfunction associated to the limit eigenvalue. Finally, we study the case in which the family of compact sets is concentrating to a point.
引用
收藏
页数:32
相关论文
共 32 条
[1]   Spectral stability under removal of small capacity sets and applications to Aharonov-Bohm operators [J].
Abatangelo, Laura ;
Felli, Veronica ;
Hillairet, Luc ;
Lena, Corentin .
JOURNAL OF SPECTRAL THEORY, 2019, 9 (02) :379-427
[2]  
Adams D.R., 2009, J MATH SCI N Y, V162, P307, DOI DOI 10.1007/S10958-009-9639-0
[3]   Strong type estimates for homogeneous Besov capacities [J].
Adams, DR ;
Xiao, J .
MATHEMATISCHE ANNALEN, 2003, 325 (04) :695-709
[4]   Capacity and inequality of Faber-Krahn in Rn [J].
Bertrand, J ;
Colbois, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 232 (01) :1-28
[5]  
BESSON G, 1985, B SOC MATH FR, V113, P211
[6]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[7]   The fractional Cheeger problem [J].
Brasco, L. ;
Lindgren, E. ;
Parini, E. .
INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) :419-458
[8]   A note on homogeneous Sobolev spaces of fractional order [J].
Brasco, Lorenzo ;
Salort, Ariel .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (04) :1295-1330
[9]   ON FRACTIONAL HARDY INEQUALITIES IN CONVEX SETS [J].
Brasco, Lorenzo ;
Cinti, Eleonora .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) :4019-4040
[10]   The second eigenvalue of the fractional p-Laplacian [J].
Brasco, Lorenzo ;
Parini, Enea .
ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) :323-355