2-D digital filter realization without overflow oscillations

被引:5
作者
Singh, Vimal [1 ]
机构
[1] Atilim Univ, Dept Elect Elect Engn, TR-06836 Ankara, Turkey
关键词
Asymptotic stability; Digital filter word length effect; Lyapunov method; Multidimensional system; Overflow oscillation; STABILITY ANALYSIS; DISCRETE-SYSTEMS; ROBUST STABILITY; LYAPUNOV EQUATION; STABILIZATION; DELAYS;
D O I
10.1016/j.nonrwa.2012.10.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel criterion for the elimination of overflow oscillations in 2-D state-space digital filters described by the Roesser model employing two's complement overflow arithmetic is presented. The criterion takes the form of linear matrix inequality (LMI) and, hence, is computationally tractable. The criterion is a generalization and improvement over an earlier criterion. An example shows the effectiveness of the new criterion. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1503 / 1510
页数:8
相关论文
共 61 条
  • [1] ALGEBRAIC NECESSARY AND SUFFICIENT CONDITIONS FOR THE VERY STRICT HURWITZ PROPERTY OF A 2-D POLYNOMIAL
    AGATHOKLIS, P
    JURY, EI
    MANSOUR, M
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1991, 2 (01) : 45 - 53
  • [2] Ahn CK, 2012, INT J INNOV COMPUT I, V8, P1453
  • [3] STABILITY AND THE MATRIX LYAPUNOV EQUATION FOR DISCRETE TWO-DIMENSIONAL SYSTEMS
    ANDERSON, BDO
    AGATHOKLIS, P
    JURY, EI
    MANSOUR, M
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (03): : 261 - 267
  • [4] Benzaouia A, 2011, INT J INNOV COMPUT I, V7, P977
  • [5] Bors D., MULTIDIMENS SYST SIG
  • [6] Boukas EK, 2010, INT J INNOV COMPUT I, V6, P1991
  • [7] BRACEWELL RN, 1995, PRENTICE HALL SIGNAL
  • [8] Byod S., 1994, LINEAR MATRIX INEQUA
  • [9] Cai GB, 2012, INT J INNOV COMPUT I, V8, P1943
  • [10] Dewasurendra Duminda A., 2008, 2008 15th IEEE International Conference on Electronics, Circuits and Systems (ICECS 2008), P1191, DOI 10.1109/ICECS.2008.4675072