Symmetry-breaking perturbations and strange attractors

被引:21
作者
LitvakHinenzon, A
RomKedar, V
机构
[1] The Faculty of Mathematical Sciences, The Weizmann Institute of Science, Rehovot, 76100
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 05期
关键词
D O I
10.1103/PhysRevE.55.4964
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The asymmetrically forced, damped Duffing oscillator is introduced as a prototype model for analyzing the homoclinic tangle of symmetric dissipative systems with symmetry-breaking disturbances. Even a slight fixed asymmetry in the perturbation may cause a substantial change in the asymptotic behavior of the system, e.g., transitions from two-sided to one-sided strange attractors as the other parameters are varied. Moreover, slight asymmetries may cause substantial differences in the relative size of the basins of attraction of the two wells. These changes seem to be associated with homoclinic bifurcations. Numerical evidence indicates that strange attractors appear near curves corresponding to specific secondary homoclinic bifurcations. These curves are found using analytical perturbational tools.
引用
收藏
页码:4964 / 4978
页数:15
相关论文
共 41 条
[21]   HOW OFTEN ARE CHAOTIC SADDLES NONHYPERBOLIC [J].
LAI, YC ;
GREBOGI, C ;
YORKE, JA ;
KAN, I .
NONLINEARITY, 1993, 6 (05) :779-797
[22]  
LITVAKHINENZON A, 1996, THESIS WEIZMANN I SC
[23]   BIRKHOFF SIGNATURE CHANGE - A CRITERION FOR THE INSTABILITY OF CHAOTIC RESONANCE [J].
MCROBIE, FA .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 338 (1651) :557-568
[24]  
Moon F.C., 1979, J SOUND VIB, V65, P275
[25]  
MOON FC, 1979, J SOUND VIB, V65, P285
[26]   ABUNDANCE OF STRANGE ATTRACTORS [J].
MORA, L ;
VIANA, M .
ACTA MATHEMATICA, 1993, 171 (01) :1-71
[27]  
Neishtadt A. I., 1986, Soviet Journal of Plasma Physics, V12, P568
[28]  
Palis J., 1993, CAMBRIDGE STUDIES AD, V35
[29]  
PELIKAN S, 1992, J DYN DIFFER EQU, V4, P667
[30]  
RAVINDRA B, 1994, PHYS REV E, V49, P50