Symmetry-breaking perturbations and strange attractors

被引:21
作者
LitvakHinenzon, A
RomKedar, V
机构
[1] The Faculty of Mathematical Sciences, The Weizmann Institute of Science, Rehovot, 76100
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 05期
关键词
D O I
10.1103/PhysRevE.55.4964
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The asymmetrically forced, damped Duffing oscillator is introduced as a prototype model for analyzing the homoclinic tangle of symmetric dissipative systems with symmetry-breaking disturbances. Even a slight fixed asymmetry in the perturbation may cause a substantial change in the asymptotic behavior of the system, e.g., transitions from two-sided to one-sided strange attractors as the other parameters are varied. Moreover, slight asymmetries may cause substantial differences in the relative size of the basins of attraction of the two wells. These changes seem to be associated with homoclinic bifurcations. Numerical evidence indicates that strange attractors appear near curves corresponding to specific secondary homoclinic bifurcations. These curves are found using analytical perturbational tools.
引用
收藏
页码:4964 / 4978
页数:15
相关论文
共 41 条
[1]  
[Anonymous], 1995, APPL NONLINER DYNAMI
[2]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[3]   THE DYNAMICS OF THE HENON MAP [J].
BENEDICKS, M ;
CARLESON, L .
ANNALS OF MATHEMATICS, 1991, 133 (01) :73-169
[4]   SINAI-BOWEN-RUELLE MEASURES FOR CERTAIN HENON MAPS [J].
BENEDICKS, M ;
YOUNG, LS .
INVENTIONES MATHEMATICAE, 1993, 112 (03) :541-576
[5]   SEPARATRIX CROSSING - TIME-INVARIANT POTENTIALS WITH DISSIPATION [J].
BOURLAND, FJ ;
HABERMAN, R .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (06) :1716-1744
[6]  
CAMASSA R, UNPUB
[7]  
CAO YL, 1995, SCI CHINA SER A, V38, P29
[8]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[9]  
*CORN U CTR APPL M, DSTOOLS COMP PROGR
[10]  
EASTON RW, 1986, T AM MATH SOC, V294, P714