Synthesis of hierarchical SnO2 nanoflowers with enhanced acetic acid gas sensing properties

被引:45
作者
Jin, W. X. [1 ]
Ma, S. Y. [1 ]
Tie, Z. Z. [1 ]
Li, W. Q. [1 ]
Luo, J. [1 ]
Cheng, L. [1 ]
Xu, X. L. [1 ]
Wang, T. T. [1 ]
Jiang, X. H. [1 ]
Mao, Y. Z. [1 ]
机构
[1] Northwest Normal Univ, Coll Phys & Elect Engn, Key Lab Atom & Mol Phys & Funct Mat Gansu Prov, Lanzhou 730070, Peoples R China
关键词
Nanoflowers; SnO2; Hydrothermal; Sensor; Formation mechanism; FACILE SYNTHESIS; OXIDE NANOSTRUCTURES; NANOSPHERES; PERFORMANCE; FABRICATION; SENSORS; GROWTH;
D O I
10.1016/j.apsusc.2015.06.089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Different morphologies hierarchical flower-like tin dioxide (SnO2) nanostructures were fabricated by changing the volume ratio of glycol and de-ionized water (V-g:V-w=0, 1:2, 1:1 and 2:1) under a template-free and low-cost hydrothermal method and subsequent calcinations. The architectures, morphologies and gas sensing performances of the products were characterized by X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) and gas-sensing measurement device. It can be observed that all the nanoflowers were composed of two-dimensional (2D) nanosheets, and the thickness of nanosheets is only about 9 nm when V-g:V-w = 1:1. The sensor based on the product of Vg:Vw = 1:1 exhibited excellent gas sensing performance toward 500 ppm acetic acid at 260 degrees C, and the response value of this sensor was about 153.6, which was above 7.5 times higher than that of ammonia (about 20.3). In addition, the 3D flower-like SnO2 nanostructures exhibited not only high response and selectivity to ppm level acetone, but also fast response and recovery time within 10 s, demonstrating it can be used as a potential candidate for detecting acetic acid. Finally, the possible formation mechanism was proposed, too. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 42 条
[11]   Large scale synthesis of flower-like SnO2 nanostructures via a facile hydrothermal route [J].
He, Qiongyao ;
Zeng, Wen ;
Wang, Yang ;
Miao, Bin ;
Long, Huiwu ;
Miao, Zichun ;
Zhang, Zheng ;
Wang, Yuechen .
MATERIALS LETTERS, 2013, 113 :42-45
[12]   Needle-like Zn-doped SnO2 nanorods with enhanced photocatalytic and gas sensing properties [J].
Huang, Hongtao ;
Tian, Shouqin ;
Xu, Jing ;
Xie, Zhong ;
Zeng, Dawen ;
Chen, Di ;
Shen, Guozhen .
NANOTECHNOLOGY, 2012, 23 (10)
[13]   Preparation of porous flower-shaped SnO2 nanostructures and their gas-sensing property [J].
Huang, Jiarui ;
Yu, Kun ;
Gu, Cuiping ;
Zhai, Muheng ;
Wu, Youjie ;
Yang, Min ;
Liu, Jinhuai .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 147 (02) :467-474
[14]   Nanowires for integrated multicolor nanophotonics [J].
Huang, Y ;
Duan, XF ;
Lieber, CM .
SMALL, 2005, 1 (01) :142-147
[15]  
Jiang C., 2012, CRYSTENGCOMM, V14, P2739
[16]   Fabrication and Gas-Sensing Properties of Porous ZnO Nanoplates [J].
Jing, Zhihong ;
Zhan, Jinhua .
ADVANCED MATERIALS, 2008, 20 (23) :4547-4551
[17]   Gas sensors using hierarchical and hollow oxide nanostructures: Overview [J].
Lee, Jong-Heun .
SENSORS AND ACTUATORS B-CHEMICAL, 2009, 140 (01) :319-336
[18]   Iron-gold barcode nanowires [J].
Lee, Ju Hun ;
Wu, Jun Hua ;
Liu, Hong Ling ;
Cho, Ji Ung ;
Cho, Moon Kyu ;
An, Boo Hyun ;
Min, Ji Hyun ;
Noh, Su Jung ;
Kim, Young Keun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (20) :3663-3667
[19]   Synthesis of hollow SnO2 nanobelts and their application in acetone sensor [J].
Li, W. Q. ;
Ma, S. Y. ;
Luo, J. ;
Mao, Y. Z. ;
Cheng, L. ;
Gengzang, D. J. ;
Xu, X. L. ;
Yan, S. H. .
MATERIALS LETTERS, 2014, 132 :338-341
[20]   Enhanced ethanol sensing performance of hollow ZnO-SnO2 core-shell nanofibers [J].
Li, Wenqi ;
Ma, Shuyi ;
Li, Yingfeng ;
Yang, Guijin ;
Mao, Yuzhen ;
Luo, Jing ;
Gengzang, Duojie ;
Xu, Xiaoli ;
Yan, Shaohui .
SENSORS AND ACTUATORS B-CHEMICAL, 2015, 211 :392-402