A multivariate maximum likelihood method for modal parameter estimation

被引:0
|
作者
Lardies, J [1 ]
Larbi, N [1 ]
机构
[1] Univ Franche Comte, Dept Appl Mech, F-25030 Besancon, France
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A multivariate maximum likelihood procedure for the estimation of modal parameters is presented. The vibrating system is excited by a random force and sensors output only are used to estimate the natural frequencies and damping coefficients of the system. The method works on time domain and a vector autoregressive moving average (VARMA) process is used. The information about modal parameters is contained in the multivariate autoregressive part, which is estimated using an iterative maximum likelihood algorithm. This algorithm uses a score technique and output data only. A numerical example and an experimental result based on three beams show the efficiency of this maximum likelihood approach for modal parameter estimation.
引用
收藏
页码:163 / 168
页数:6
相关论文
共 50 条
  • [21] Ultrasonic Parameter Estimation Using the Maximum Likelihood Estimation
    Laddada, S.
    Lemlikchi, S.
    Djelouah, H.
    Si-Chaib, M. O.
    2015 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 200 - +
  • [22] ELM parameter estimation in view of maximum likelihood
    Yang, Lanzhen
    Tsang, Eric C. C.
    Wang, Xizhao
    Zhang, Chengling
    NEUROCOMPUTING, 2023, 557
  • [23] Maximum likelihood estimation for the Erlang integer parameter
    Miller, GK
    STATISTICS & PROBABILITY LETTERS, 1999, 43 (04) : 335 - 341
  • [24] On maximum likelihood estimation of the binomial parameter n
    Gupta, AK
    Nguyen, TT
    Wang, YN
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (03): : 599 - 606
  • [25] EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions with fixed λ
    Protassov, RS
    STATISTICS AND COMPUTING, 2004, 14 (01) : 67 - 77
  • [26] EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions with fixed λ
    Rostislav S. Protassov
    Statistics and Computing, 2004, 14 : 67 - 77
  • [27] MAXIMUM-LIKELIHOOD ESTIMATION OF ISOTONIC MODAL REGRESSION
    SAGER, TW
    THISTED, RA
    ANNALS OF STATISTICS, 1982, 10 (03): : 690 - 707
  • [28] Maximum Likelihood Method for MIMO Mobile-to-mobile Channel Parameter Estimation
    Zajic, Alenka G.
    Stueber, Gordon L.
    GLOBECOM 2008 - 2008 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, 2008,
  • [29] Quasi-maximum likelihood estimation of multivariate diffusions
    Huang, Xiao
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2013, 17 (02): : 179 - 197
  • [30] MAXIMUM-LIKELIHOOD ESTIMATION IN MULTIVARIATE STRUCTURAL RELATIONSHIPS
    CHAN, LK
    MAK, TK
    SCANDINAVIAN JOURNAL OF STATISTICS, 1984, 11 (01) : 45 - 50