Three sides of the geometric Langlands correspondence for glN Gaudin model and Bethe vector averaging maps

被引:0
作者
Mukhin, Eugene [1 ]
Tarasov, Vitaly [1 ,2 ]
Varchenko, Alexander [3 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, 402 N Blackford St, Indianapolis, IN 46202 USA
[2] Steklov Math Inst, St Petersburg Branch, RU-191023 St Petersburg, Russia
[3] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
来源
ARRANGEMENTS OF HYPERPLANES - SAPPORO 2009 | 2012年 / 62卷
基金
美国国家科学基金会;
关键词
Bethe algebra; Bethe anzats; Bethe vector averaging map; master function; critical points; Wronsky map; CRITICAL-POINTS; ANSATZ; REPRESENTATIONS; ARRANGEMENTS; HYPERPLANES; EQUATIONS; ALGEBRA;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the gl(N) Gaudin model of a tensor power of the standard vector representation. The geometric Langlands correspondence in the Gaudin model relates the Bethe algebra of the commuting Gaudin Hamiltonians and the algebra of functions on a suitable space of N-th order differential operators. In this paper we introduce a third side of the correspondence: the algebra of functions on the critical set of a master function. We construct isomorphisms of the third algebra and the first two. Our main technical tool is the Bethe vector averaging maps, which is a new object.
引用
收藏
页码:475 / +
页数:4
相关论文
共 20 条
[1]  
Arnold V. I., 1985, Monogr. Math., V82
[2]   OFF-SHELL BETHE-ANSATZ EQUATIONS AND N-POINT CORRELATORS IN THE SU(2) WZNW THEORY [J].
BABUJIAN, HM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (23) :6981-6990
[3]  
Chari V., 2001, Representation Theory, V5, P191, DOI [10.1090/S1088-4165-01-00115-7, DOI 10.1090/S1088-4165-01-00115-7]
[4]   Weyl, Demazure and fusion modules for the current algebra of s1r+1 [J].
Chari, Vyjayanthi ;
Loktev, Sergei .
ADVANCES IN MATHEMATICS, 2006, 207 (02) :928-960
[5]   Degrees of real Wronski maps [J].
Eremenko, A ;
Gabrielov, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 28 (03) :331-347
[6]   GAUDIN MODEL, BETHE-ANSATZ AND CRITICAL-LEVEL [J].
FEIGIN, B ;
FRENKEL, E ;
RESHETIKHIN, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (01) :27-62
[7]  
Griffiths P., 1994, Wiley Classics Library, DOI [10.1002/9781118032527, DOI 10.1002/9781118032527]
[8]   AN APPLICATION OF AOMOTO-GELFAND HYPERGEOMETRIC-FUNCTIONS TO THE SU(N) KNIZHNIK-ZAMOLODCHIKOV EQUATION [J].
MATSUO, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 134 (01) :65-77
[9]   Norm of a Bethe vector and the Hessian of the master function [J].
Mukhin, E ;
Varchenko, A .
COMPOSITIO MATHEMATICA, 2005, 141 (04) :1012-1028
[10]   Critical points of master functions and flag varieties [J].
Mukhin, E .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (01) :111-163