The Completeness Problem for Modal Logic

被引:2
作者
Achilleos, Antonis [1 ]
机构
[1] Reykjavik Univ, Sch Comp Sci, Reykjavik, Iceland
来源
LOGICAL FOUNDATIONS OF COMPUTER SCIENCE (LFCS 2018) | 2018年 / 10703卷
关键词
Modal logic; Completeness; Computational complexity; Bisimulation; COMPLEXITY; FORMULAS;
D O I
10.1007/978-3-319-72056-2_1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce the completeness problem for Modal Logic and examine its complexity. For a definition of completeness for formulas, given a formula of a modal logic, the completeness problem asks whether the formula is complete for that logic. We discover that completeness and validity have the same complexity - with certain exceptions for which there are, in general, no complete formulas. To prove upper bounds, we present a non-deterministic polynomial-time procedure with an oracle from PSPACE that combines tableaux and a test for bisimulation, and determines whether a formula is complete.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 21 条
  • [1] When Are Prime Formulae Characteristic?
    Aceto, L.
    Della Monica, D.
    Fabregas, I.
    Ingolfsdottir, A.
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2015, PT I, 2015, 9234 : 76 - 88
  • [2] Achilleos A., 2016, CORR
  • [3] Artemov S., 2015, 15 C LOGIC METHODOLO, P109
  • [4] Artemov S., 2016, SYNTACTIC EPISTEMIC
  • [5] Blackburn P., 2001, MODAL LOGIC, V53
  • [6] ON THE UNIQUE SATISFIABILITY PROBLEM
    BLASS, A
    GUREVICH, Y
    [J]. INFORMATION AND CONTROL, 1982, 55 (1-3): : 80 - 88
  • [7] Chagrov A., 1997, Modal Logic
  • [8] DAgostino M., 1999, HDB TABLEAU METHODS, DOI [10.1007/978-94-017-1754-0, DOI 10.1007/978-94-017-1754-0]
  • [9] Fine K., 1975, Notre Dame Journal of Formal Logic, V16, P229, DOI 10.1305/ndjfl/1093891703
  • [10] Fitting Fit72 Melvin, 1972, Notre Dame Journal of Formal Logic, V13, P237