Moments of zeta and correlations of divisor-sums: V

被引:18
作者
Conrey, Brian [1 ,2 ]
Keating, Jonathan P. [2 ]
机构
[1] Amer Inst Math, 360 Portage Ave, Palo Alto, CA 94306 USA
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
RANDOM-MATRIX THEORY; RIEMANN ZEROS;
D O I
10.1112/plms.12196
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this series of papers we examine the calculation of the 2kth moment and shifted moments of the Riemann zeta-function on the critical line using long Dirichlet polynomials and divisor correlations. The present paper completes the general study of what we call Type II sums which utilize a circle method framework and a convolution of shifted convolution sums to obtain all of the lower order terms in the asymptotic formula for the mean square along [T,2T] of a Dirichlet polynomial of arbitrary length with divisor functions as coefficients.
引用
收藏
页码:729 / 752
页数:24
相关论文
共 15 条
[11]   RATIONAL-POINTS OF BOUNDED HEIGHT ON FANO VARIETIES [J].
FRANKE, J ;
MANIN, YI ;
TSCHINKEL, Y .
INVENTIONES MATHEMATICAE, 1989, 95 (02) :421-435
[12]  
Goldston DA, 1998, ACTA ARITH, V84, P155
[13]   Random Matrix Theory and ζ(1/2+it) [J].
Keating, JP ;
Snaith, NC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) :57-89
[14]  
Lehmann B., 2018, ARXIV180707995
[15]  
[No title captured]