ALLOW PROBLEMS CONCERNING SPECTRAL PROPERTIES OF PATTERNS

被引:13
作者
Cavers, Michael S. [1 ]
Fallat, Shaun M. [2 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Generalized sign patterns; Inertially arbitrary; Potentially nilpotent; Potentially purely imaginary; Potentially stable; Refined inertially arbitrary; Sign patterns; Spectrally arbitrary; Zero-nonzero patterns; ARBITRARY SIGN PATTERNS; ZERO-NONZERO PATTERNS; MATRICES; ORDER-4;
D O I
10.13001/1081-3810.1553
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S subset of {0, +, -, +(0), -(0), *, #} be a set of symbols, where + (resp., -, +(0) and -(0)) denotes a positive (resp., negative, nonnegative and nonpositive) real number, and * (resp., #) denotes a nonzero (resp., arbitrary) real number. An S-pattern is a matrix with entries in S. In particular, a {0, +, -}-pattern is a sign pattern and a {0, *}-pattern is a zero-nonzero pattern. This paper extends the following problems concerning spectral properties of sign patterns and zero-nonzero patterns to S-patters: spectrally arbitrary patterns; inertially arbitrary patterns; refined inertially arbitrary patterns; potentially nilpotent patterns; potentially stable patterns; and potentially purely imaginary patterns. Relationships between these classes of S-patterns are given and techniques that appear in the literature are extended. Some interesting examples and properties of patterns when # belongs to the symbol set are highlighted. For example, it is shown that there is a {0, +, #}-pattern of order n that is spectrally arbitrary with exactly 2n-1 nonzero entries. Finally, a modified version of the nilpotent-Jacobian method is presented that can be used to show a pattern is inertially arbitrary.
引用
收藏
页码:731 / 754
页数:24
相关论文
共 22 条
[1]   Potentially nilpotent patterns and the Nilpotent-Jacobian method [J].
Bergsma, Hannah ;
Vander Meulen, Kevin N. ;
Van Tuyl, Adam .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) :4433-4445
[2]   Minimal spectrally arbitrary sign patterns [J].
Britz, T ;
McDonald, JJ ;
Olesky, DD ;
van den Driessche, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) :257-271
[3]   Allow problems concerning spectral properties of sign pattern matrices: A survey [J].
Catral, M. ;
Olesky, D. D. ;
van den Driessche, P. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (11-12) :3080-3094
[4]  
Cavers MS, 2007, ELECTRON J LINEAR AL, V16, P30
[5]   Sparse inertially arbitrary patterns [J].
Cavers, Michael S. ;
Vander Meulen, Kevin N. ;
Vanderspek, Loretta .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (11) :2024-2034
[6]  
Cavers MS, 2005, ELECTRON J LINEAR AL, V13, P240
[7]   Spectrally and inertially arbitrary sign patterns [J].
Cavers, MS ;
Vander Meulen, KN .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 394 :53-72
[8]   Spectrally arbitrary zero-nonzero patterns of order 4 [J].
Corpuz, L. ;
McDonald, J. J. .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (03) :249-273
[9]   REFINED INERTIALLY AND SPECTRALLY ARBITRARY ZERO-NONZERO PATTERNS [J].
Deaett, L. ;
Olesky, D. D. ;
van den Driessche, P. .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 :449-467
[10]   Spectrally arbitrary patterns:: Reducibility and the 2n conjecture for n=5 [J].
DeAlba, Luz M. ;
Hentzel, Irvin R. ;
Hogben, Leslie ;
McDonald, Judith ;
Mikkelson, Rana ;
Pryporova, Olga ;
Shader, Bryan ;
Vander Meulen, Kevin N. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (2-3) :262-276