Phase behavior of colloids and proteins in aqueous suspensions: Theory and computer simulations

被引:79
|
作者
Valadez-Perez, Nestor E. [1 ]
Benavides, Ana L. [1 ]
Schoell-Paschinger, Elisabeth [2 ]
Castaneda-Priego, Ramn [1 ]
机构
[1] Univ Guanajuato, Div Ciencias & Ingn, Guanajuato 37150, Mexico
[2] Univ Bodenkultur, Dept Mat Wissensch & Prozesstech, A-1190 Vienna, Austria
来源
JOURNAL OF CHEMICAL PHYSICS | 2012年 / 137卷 / 08期
基金
奥地利科学基金会;
关键词
MONTE-CARLO-SIMULATION; EQUATION-OF-STATE; SQUARE-WELL MODEL; PERTURBATION-THEORY; CORRESPONDING-STATES; EQUILIBRIUM CLUSTERS; POLYETHYLENE-GLYCOL; SIMPLE FLUIDS; LIQUID; RANGE;
D O I
10.1063/1.4747193
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The fluid phase behavior of colloidal suspensions with short-range attractive interactions is studied by means of Monte Carlo computer simulations and two theoretical approximations, namely, the discrete perturbation theory and the so-called self-consistent Ornstein-Zernike approximation. The suspensions are modeled as hard-core attractive Yukawa (HCAY) and Asakura-Oosawa (AO) fluids. A detailed comparison of the liquid-vapor phase diagrams obtained through different routes is presented. We confirm Noro-Frenkel's extended law of scaling according to which the properties of a short-ranged fluid at a given temperature and density are independent of the detailed form of the interaction, but just depend on the value of the second virial coefficient. By mapping the HCAY and AO fluids onto an equivalent square-well fluid of appropriate range at the critical point we show that the critical temperature as a function of the effective range is independent of the interaction potential, i.e., all curves fall in a master curve. Our findings are corroborated with recent experimental data for lysozyme proteins. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747193]
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Phase Behavior in Suspensions of Highly Charged Colloids
    Brulkhno, Andrey V.
    Akesson, Torbjoern
    Jonsson, Bo
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (19): : 6766 - 6774
  • [2] A theory of the colloids and suspensions.
    Billitzer, J
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE--STOCHIOMETRIE UND VERWANDTSCHAFTSLEHRE, 1903, 45 (03): : 307 - 330
  • [3] Computer simulations of coating suspensions
    Qi, DW
    1997 TAPPI ADVANCED COATING FUNDAMENTALS SYMPOSIUM, PROCEEDINGS, 1997, : 201 - 226
  • [4] Computer simulations of charged colloids in confinement
    Puertas, Antonio M.
    Javier de las Nieves, F.
    Cuetos, Alejandro
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 440 : 292 - 298
  • [5] Phase diagram of hard board-like colloids from computer simulations
    Peroukidis, Stavros D.
    Vanakaras, Alexandros G.
    SOFT MATTER, 2013, 9 (31) : 7419 - 7423
  • [6] On the Theory of Electrostatic Interactions in Suspensions of Charged Colloids
    Mulder, Willem H.
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2010, 74 (01) : 1 - 4
  • [7] Studying the mechanism of phase separation in aqueous solutions of globular proteins via molecular dynamics computer simulations
    Brudar, Sandi
    Gujt, Jure
    Spohr, Eckhard
    Hribar-Lee, Barbara
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (01) : 415 - 424
  • [8] ON THE THEORY OF PARTICLE CAPTURE OF A FERROMAGNETIC DISPERSED PHASE OF COLLOIDS AND SUSPENSIONS BY MAGNETIZED SPHERES.
    Sandulyak, A.V.
    Soviet Progress in Chemistry (English translation of Ukrainskii Khimicheskii Zhurnal), 1983, 49 (06): : 39 - 43
  • [9] The role of long-range forces in the phase behavior of colloids and proteins
    Noro, MG
    Kern, N
    Frenkel, D
    EUROPHYSICS LETTERS, 1999, 48 (03): : 332 - 338
  • [10] Layering in sedimentation of suspensions of charged colloids: Simulation and theory
    Cuetos, A.
    Hynninen, A. -P.
    Zwanikken, J.
    van Roij, R.
    Dijkstra, M.
    PHYSICAL REVIEW E, 2006, 73 (06):