Seven in absentia proteins affect plant growth and nodulation in Medicago truncatula

被引:49
|
作者
Den Herder, Griet [1 ,2 ]
De Keyser, Annick [1 ,2 ]
De Rycke, Riet [1 ,2 ]
Rombauts, Stephane [1 ,2 ]
Van de Velde, Willem [1 ,2 ]
Clemente, Maria R. [1 ,2 ]
Verplancke, Christa [1 ,2 ]
Mergaert, Peter [3 ]
Kondorosi, Eva [3 ]
Holsters, Marcelle [1 ,2 ]
Goormachtig, Sofie [1 ,2 ]
机构
[1] Univ Ghent VIB, Dept Plant Syst Biol, Dept Mol Genet, B-9052 Ghent, Belgium
[2] Univ Ghent VIB, Flanders Inst Biotechnol, B-9052 Ghent, Belgium
[3] CNRS, Inst Sci Vegetales, F-91198 Gif Sur Yvette, France
关键词
D O I
10.1104/pp.108.119453
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Protein ubiquitination is a posttranslational regulatory process essential for plant growth and interaction with the environment. E3 ligases, to which the seven in absentia (SINA) proteins belong, determine the specificity by selecting the target proteins for ubiquitination. SINA proteins are found in animals as well as in plants, and a small gene family with highly related members has been identified in the genome of rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), Medicago truncatula, and poplar (Populus trichocarpa). To acquire insight into the function of SINA proteins in nodulation, a dominant negative form of the Arabidopsis SINAT5 was ectopically expressed in the model legume M. truncatula. After rhizobial inoculation of the 35S:SINAT5DN transgenic plants, fewer nodules were formed than in control plants, and most nodules remained small and white, a sign of impaired symbiosis. Defects in rhizobial infection and symbiosome formation were observed by extensive microscopic analysis. Besides the nodulation phenotype, transgenic plants were affected in shoot growth, leaf size, and lateral root number. This work illustrates a function for SINA E3 ligases in a broad spectrum of plant developmental processes, including nodulation.
引用
收藏
页码:369 / 382
页数:14
相关论文
共 50 条
  • [21] Unraveling new molecular players involved in the autoregulation of nodulation in Medicago truncatula
    Gautrat, Pierre
    Mortier, Virginie
    Laffont, Carole
    De Keyser, Annick
    Fromentin, Justine
    Frugier, Florian
    Goormachtig, Sofie
    JOURNAL OF EXPERIMENTAL BOTANY, 2019, 70 (04) : 1407 - 1417
  • [22] GRAS Proteins Form a DNA Binding Complex to Induce Gene Expression during Nodulation Signaling in Medicago truncatula
    Hirsch, Sibylle
    Kim, Jiyoung
    Munoz, Alfonso
    Heckmann, Anne B.
    Downie, J. Allan
    Oldroyd, Giles E. D.
    PLANT CELL, 2009, 21 (02): : 545 - 557
  • [23] Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula
    Wais, RJ
    Galera, C
    Oldroyd, G
    Catoira, R
    Penmetsa, RV
    Cook, D
    Gough, C
    Dénarié, J
    Long, SR
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (24) : 13407 - 13412
  • [24] Temporal change in chromatin accessibility predicts regulators of nodulation in Medicago truncatula
    Sara A. Knaack
    Daniel Conde
    Sanhita Chakraborty
    Kelly M. Balmant
    Thomas B. Irving
    Lucas Gontijo Silva Maia
    Paolo M. Triozzi
    Christopher Dervinis
    Wendell J. Pereira
    Junko Maeda
    Henry W. Schmidt
    Jean-Michel Ané
    Matias Kirst
    Sushmita Roy
    BMC Biology, 20
  • [25] Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula
    Frendo, P
    Harrison, J
    Norman, C
    Jiménez, MJH
    Van de Sype, G
    Gilabert, A
    Puppo, A
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2005, 18 (03) : 254 - 259
  • [26] Nodulation of Medicago truncatula and Medicago polymorpha in two pastures of contrasting soil pH and rhizobial populations
    Denton, Matthew D.
    Hill, Christopher R.
    Bellotti, William D.
    Coventry, David R.
    APPLIED SOIL ECOLOGY, 2007, 35 (02) : 441 - 448
  • [27] Plant circadian clock control of Medicago truncatula nodulation via regulation of nodule cysteine-rich peptides
    Achom, Mingkee
    Roy, Proyash
    Lagunas, Beatriz
    Picot, Emma
    Richards, Luke
    Bonyadi-Pour, Roxanna
    Pardal, Alonso J.
    Baxter, Laura
    Richmond, Bethany L.
    Aschauer, Nadine
    Fletcher, Eleanor M.
    Rowson, Monique
    Blackwell, Joseph
    Rich-Griffin, Charlotte
    Mysore, Kirankumar S.
    Wen, Jiangqi
    Ott, Sascha
    Carre, Isabelle A.
    Gifford, Miriam L.
    JOURNAL OF EXPERIMENTAL BOTANY, 2022, 73 (07) : 2142 - 2156
  • [28] Medicago sativa and Medicago truncatula as plant sources of the chemopreventive flavone tricin
    Stochmal, A.
    Kawalska, I
    Oleszek, W.
    PLANTA MEDICA, 2007, 73 (09) : 917 - 917
  • [29] Requirements for syrM and nodD genes in the nodulation of Medicago truncatula by Rhizobium meliloti 1021
    Smith, LS
    Long, SR
    MOLECULAR PLANT-MICROBE INTERACTIONS, 1998, 11 (09) : 937 - 940
  • [30] Cell-specific pathways recruited for symbiotic nodulation in the Medicago truncatula legume
    Cervantes-Perez, Sergio Alan
    Thibivilliers, Sandra
    Laffont, Carole
    Farmer, Andrew D.
    Frugier, Florian
    Libault, Marc
    MOLECULAR PLANT, 2022, 15 (12) : 1868 - 1888