An optimum PML for scattering problems in the time domain

被引:7
|
作者
Modave, Axel [1 ]
Kameni, Abelin [2 ,3 ]
Lambrechts, Jonathan [4 ]
Delhez, Eric [5 ]
Pichon, Lionel [2 ,3 ]
Geuzaine, Christophe [1 ]
机构
[1] Univ Liege, Inst Montefiore, Dept Elect Engn & Comp Sci, B-4000 Liege, Belgium
[2] Univ Paris 06, CNRS, UMR 8507, Lab Genie Elect Paris,Supelec, F-91192 Gif Sur Yvette, France
[3] Univ Paris 11, F-91192 Gif Sur Yvette, France
[4] Catholic Univ Louvain, Inst Mech Mat & Civil Engn iMMC, B-1348 Louvain, Belgium
[5] Univ Liege, Dept Aerosp & Mech Engn, B-4000 Liege, Belgium
来源
关键词
PERFECTLY MATCHED LAYER; EQUATIONS;
D O I
10.1051/epjap/2013120447
中图分类号
O59 [应用物理学];
学科分类号
摘要
In electromagnetic compatibility, scattering problems are defined in an infinite spatial domain, while numerical techniques such as finite element methods require a computational domain that is bounded. The perfectly matched layer (PML) is widely used to simulate the truncation of the computational domain. However, its performance depends critically on an absorption function. This function is generally tuned by using case-dependent optimization procedures. In this paper, we will present some efficient functions that overcome any tuning. They will be compared using a realistic scattering benchmark solved with the Discontinuous Galerkin method.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Parallel Time Domain Solvers for Electrically Large Transient Scattering Problems
    Liu, Yang
    Yucel, Abdulkadir
    Bagcy, Hakan
    Michielssen, Eric
    2014 8TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2014, : 2231 - 2231
  • [22] A comparison of time-domain hybrid solvers for complex scattering problems
    Edelvik, F
    Ledfelt, G
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2002, 15 (5-6) : 475 - 487
  • [23] A multidomain decomposition method to solve electromagnetic scattering problems in time domain
    Mouysset, V.
    Mazet, P. A.
    Borderies, P.
    RADIO SCIENCE, 2007, 42 (04)
  • [24] OPTIMUM DOMAIN PROBLEMS GOVERNED BY A CLASS OF PDE
    XU, JM
    LU, JA
    LECTURE NOTES IN MATHEMATICS, 1987, 1297 : 165 - 170
  • [25] OPTIMUM INTERVAL APPROXIMATION IN TIME DOMAIN
    MULLICK, SK
    IRE TRANSACTIONS ON CIRCUIT THEORY, 1961, CT 9 (03): : 369 - &
  • [26] Combining PML and ABC for the finite-element analysis of scattering problems
    Jin, JM
    Chew, WC
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1996, 12 (04) : 192 - 197
  • [27] Combining PML and ABC for the finite-element analysis of scattering problems
    Univ of Illinois at Urbana-Champaign, Urbana, United States
    Microwave Opt Technol Lett, 4 (192-197):
  • [28] An Adaptive Finite Element PML Method for the Open Cavity Scattering Problems
    Chen, Yanli
    Li, Peijun
    Yuan, Xiaokai
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 29 (05) : 1505 - 1540
  • [29] Numerical modeling of scattering problems using a time domain finite volume method
    Bonnet, P
    Ferrieres, X
    Issac, F
    Paladian, F
    Grando, J
    Alliot, JC
    Fontaine, J
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1997, 11 (08) : 1165 - 1189
  • [30] Time domain integral equation methods for analyses of transient radiation and scattering problems
    Zhang, G. H.
    Xia, M. Y.
    Dai, G. L.
    Chan, C. H.
    2007 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-12, 2007, : 4161 - +