An optimum PML for scattering problems in the time domain

被引:7
|
作者
Modave, Axel [1 ]
Kameni, Abelin [2 ,3 ]
Lambrechts, Jonathan [4 ]
Delhez, Eric [5 ]
Pichon, Lionel [2 ,3 ]
Geuzaine, Christophe [1 ]
机构
[1] Univ Liege, Inst Montefiore, Dept Elect Engn & Comp Sci, B-4000 Liege, Belgium
[2] Univ Paris 06, CNRS, UMR 8507, Lab Genie Elect Paris,Supelec, F-91192 Gif Sur Yvette, France
[3] Univ Paris 11, F-91192 Gif Sur Yvette, France
[4] Catholic Univ Louvain, Inst Mech Mat & Civil Engn iMMC, B-1348 Louvain, Belgium
[5] Univ Liege, Dept Aerosp & Mech Engn, B-4000 Liege, Belgium
来源
关键词
PERFECTLY MATCHED LAYER; EQUATIONS;
D O I
10.1051/epjap/2013120447
中图分类号
O59 [应用物理学];
学科分类号
摘要
In electromagnetic compatibility, scattering problems are defined in an infinite spatial domain, while numerical techniques such as finite element methods require a computational domain that is bounded. The perfectly matched layer (PML) is widely used to simulate the truncation of the computational domain. However, its performance depends critically on an absorption function. This function is generally tuned by using case-dependent optimization procedures. In this paper, we will present some efficient functions that overcome any tuning. They will be compared using a realistic scattering benchmark solved with the Discontinuous Galerkin method.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] CONVERGENCE ANALYSIS OF THE PML METHOD FOR TIME-DOMAIN ELECTROMAGNETIC SCATTERING PROBLEMS
    Wei, Changkun
    Yang, Jiaqing
    Zhang, Bo
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (03) : 1918 - 1940
  • [2] Convergence of the uniaxial PML method for time-domain electromagnetic scattering problems
    Wei, Changkun
    Yang, Jiaqing
    Zhang, Bo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (05): : 2421 - 2443
  • [3] Adaptive computation with PML for time-harmonic scattering problems
    Chen, ZM
    Liu, XX
    RECENT ADVANCES IN ADAPTIVE COMPUTATION, PROCEEDINGS, 2005, 383 : 35 - 46
  • [4] ANALYSIS OF THE TIME-DOMAIN PML PROBLEM FOR THE ELECTROMAGNETIC SCATTERING BY PERIODIC STRUCTURES
    Chen, Yanli
    Gao, Yixian
    LI, Peijun
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (07) : 1785 - 1813
  • [5] Time domain CFIEs for electromagnetic scattering problems
    Chen, Qiang
    Monk, Peter
    APPLIED NUMERICAL MATHEMATICS, 2014, 79 : 62 - 78
  • [6] CONVERGENCE OF THE PML METHOD FOR TIME-DOMAIN ACOUSTIC SCATTERING PROBLEM IN THREE DIMENSIONS
    Liang, Jiawei
    Lv, Junliang
    Niu, Tian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (04): : 1390 - 1414
  • [7] CONVERGENCE OF THE PML METHOD FOR ELASTIC WAVE SCATTERING PROBLEMS
    Chen, Zhiming
    Xiang, Xueshuang
    Zhang, Xiaohui
    MATHEMATICS OF COMPUTATION, 2016, 85 (302) : 2687 - 2714
  • [8] A time domain analysis of PML models in acoustics
    Diaz, J.
    Joly, P.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (29-32) : 3820 - 3853
  • [9] PML in Discontinuous Galerkin Time Domain Methods
    Stylianos, Dosopoulos
    Rawat, Vineet
    Lee, Jin-Fa
    2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 3023 - 3026
  • [10] SPECTRAL AND TIME DOMAIN APPROACHES TO SOME INVERSE SCATTERING PROBLEMS
    BOLOMEY, JC
    LESSELIER, D
    PICHOT, C
    TABBARA, W
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1981, 29 (02) : 206 - 212