Coherent quality management for big data systems: a dynamic approach for stochastic time consistency

被引:22
作者
Chen, Yi-Ting [1 ,2 ]
Sun, Edward W. [3 ]
Lin, Yi-Bing [2 ]
机构
[1] Univ Mannheim, Sch Business Informat & Math, Mannheim, Germany
[2] NCTU, Coll Comp Sci, Hsinchu, Taiwan
[3] KEDGE Business Sch, 680 Cours Liberat, F-33405 Talence, France
关键词
Big data; Dynamic coherent measure; Optimal decision; Quality management; Time consistency; VALUE-AT-RISK;
D O I
10.1007/s10479-018-2795-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Big data systems for reinforcement learning have often exhibited problems (e.g., failures or errors) when their components involve stochastic nature with the continuous control actions of reliability and quality. The complexity of big data systems and their stochastic features raise the challenge of uncertainty. This article proposes a dynamic coherent quality measure focusing on an axiomatic framework by characterizing the probability of critical errors that can be used to evaluate if the conveyed information of big data interacts efficiently with the integrated system (i.e., system of systems) to achieve desired performance. Herein, we consider two new measures that compute the higher-than-expected error,that is, the tail error and its conditional expectation of the excessive error (conditional tail error)as a quality measure of a big data system. We illustrate several properties (that suffice stochastic time-invariance) of the proposed dynamic coherent quality measure for a big data system. We apply the proposed measures in an empirical study with three wavelet-based big data systems in monitoring and forecasting electricity demand to conduct the reliability and quality management in terms of minimizing decision-making errors. Performance of using our approach in the assessment illustrates its superiority and confirms the efficiency and robustness of the proposed method.
引用
收藏
页码:3 / 32
页数:30
相关论文
共 33 条
[1]   Determinants of quality management practices: An empirical study of New Zealand manufacturing firms [J].
Agarwal, Renu ;
Green, Roy ;
Brown, Paul J. ;
Tan, Hao ;
Randhawa, Krithika .
INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2013, 142 (01) :130-145
[2]   Coherent multiperiod risk adjusted values and Bellman's principle [J].
Artzner, Philippe ;
Delbaen, Freddy ;
Eber, Jean-Marc ;
Heath, David ;
Ku, Hyejin .
ANNALS OF OPERATIONS RESEARCH, 2007, 152 (1) :5-22
[3]   Invariant Probabilistic Sensitivity Analysis [J].
Baucells, Manel ;
Borgonovo, Emanuele .
MANAGEMENT SCIENCE, 2013, 59 (11) :2536-2549
[4]   Dynamic risk measures: Time consistency and risk measures from BMO martingales [J].
Bion-Nadal, Jocelyne .
FINANCE AND STOCHASTICS, 2008, 12 (02) :219-244
[5]   Time consistent dynamic risk processes [J].
Bion-Nadal, Jocelyne .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (02) :633-654
[6]  
Chen Y., 2015, JUMP DETECTION NOISE
[7]  
Chen Y, 2018, FRONTIERS DATA SCI, P223
[8]   Risk Assessment with Wavelet Feature Engineering for High-Frequency Portfolio Trading [J].
Chen, Yi-Ting ;
Sun, Edward W. ;
Yu, Min-Teh .
COMPUTATIONAL ECONOMICS, 2018, 52 (02) :653-684
[9]   Improving model performance with the integrated wavelet denoising method [J].
Chen, Yi-Ting ;
Sun, Edward W. ;
Yu, Min-Teh .
STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2015, 19 (04) :445-467
[10]   Time-inconsistency of VaR and time-consistent alternatives [J].
Cheridito, Patrick ;
Stadje, Mitja .
FINANCE RESEARCH LETTERS, 2009, 6 (01) :40-46