Multilayer machine learning algorithm to classify diabetic type on knee dataset

被引:0
|
作者
Anjaneya, L. H. [1 ]
Holi, Mallikarjun S. [2 ]
机构
[1] Bapuji Inst Engn & Technol, Dept Biomed Engn, Davangere, Karnataka, India
[2] UBDT Coll Engn, Dept Elect & Instrumentat Engn, Davangere, Karnataka, India
来源
2016 IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT) | 2016年
关键词
Diabetes; EMG signal; time domain feature; frequency domain; classification; neural network; NEUROPATHY; EMG;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
since last decade, the diabetes risks are increasing in children and adults. Various approaches have been proposed for early detection of the diabetes and prevention on it. Some methods use EMG signals for diabetes classification, due to motion artifacts in the EMG signals during acquisition of signal, these approaches are not able to classify the signal efficiently. To overcome this we propose anew method by considering time domain and frequency domain features of the EMG signals and to perform the classification we use neural network. This method is executed using MATLAB tool and simulation study shows the accuracy of proposed approach is 97.05%.
引用
收藏
页码:584 / 587
页数:4
相关论文
共 50 条
  • [21] Machine learning algorithms to classify spinal muscular atrophy subtypes
    Srivastava, Tuhin
    Darras, Basil T.
    Wu, Jim S.
    Rutkove, Seward B.
    NEUROLOGY, 2012, 79 (04) : 358 - 364
  • [22] DEVELOPMENT OF GENERALIZED MACHINE LEARNING MODEL TO CLASSIFY POLSAR DATA
    Turkar, Varsha
    Masurkar, Akhil
    Das, Anup
    Daruwala, Rohin
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7475 - 7478
  • [23] Machine Learning Models to Classify and Predict Depression in College Students
    Iparraguirre-Villanueva, Orlando
    Paulino-Moreno, Cleoge
    Epifanía-Huerta, Andrés
    Torres-Ceclén, Carmen
    International Journal of Interactive Mobile Technologies, 2024, 18 (14) : 148 - 163
  • [24] An Interpretable Machine Learning Model to Classify Coronary Bifurcation Lesions
    Liu, Xiaoqian
    Vardhan, Madhurima
    Wen, Qinrou
    Das, Arpita
    Randles, Amanda
    Chi, Eric C.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 4432 - 4435
  • [25] Comparative study of machine learning methods to classify bowel polyps
    Cincar, Kristijan
    Ivascu, Todor
    Negru, Viorel
    2023 25TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC 2023, 2023, : 279 - 286
  • [26] Evaluation of machine learning algorithms to classify and map landforms in Antarctica
    Siqueira, Rafael G.
    Veloso, Gustavo V.
    Fernandes-Filho, Elpidio, I
    Francelino, Marcio R.
    Schaefer, Carlos Ernesto G. R.
    Correa, Guilherme R.
    EARTH SURFACE PROCESSES AND LANDFORMS, 2022, 47 (02) : 367 - 382
  • [27] Using Machine Learning Technologies to Classify and Predict Heart Disease
    Alrifaie, Mohammed F.
    Ahmed, Zakir Hussain
    Hameed, Asaad Shakir
    Mutar, Modhi Lafta
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (03) : 123 - 127
  • [28] Credit Scoring to Classify Consumer Loan Using Machine Learning
    Natasha, Azaria
    Prastyo, Dedy Dwi
    Suhartono
    2ND INTERNATIONAL CONFERENCE ON SCIENCE, MATHEMATICS, ENVIRONMENT, AND EDUCATION, 2019, 2019, 2194
  • [29] Implementation of Machine Learning algorithms to classify university academic success
    Jimenez Delgado, Efren
    Roldan Morales, Linnette
    Calvo Araya, Yesenia
    2022 17TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2022,
  • [30] Evaluating hierarchical machine learning approaches to classify biological databases
    Rezende, Pamela M.
    Xavier, Joicymara S.
    Ascher, David B.
    Fernandes, Gabriel R.
    Pires, Douglas E., V
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (04)