A statistical test procedure for the shape parameter of a generalized Pareto distribution

被引:12
作者
Chaouche, A
Bacro, JN
机构
[1] ENGREF, GRESE, F-75732 Paris 15, France
[2] Univ Montpellier 2, Lab Probabil & Stat, F-34095 Montpellier 5, France
关键词
generalized Pareto distribution; probability weighted moment; maximum likelihood ratio test; small sample size;
D O I
10.1016/S0167-9473(03)00087-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A general procedure for deriving statistical tests on the shape parameter of a generalized Pareto distribution (GPD) Gxibeta is proposed. From the existence condition of the GPD, statistics which discriminate between possible xi values can be derived by elimination of the beta parameter through a probability weighted moment (PWM) approach. The test statistics used are independent of the beta value and related to the chosen PWM approach. Two particular statistics are considered and a simulation study shows how the proposed procedure outperforms the classical maximum likelihood ratio test for small sample sizes. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:787 / 803
页数:17
相关论文
共 12 条
[1]   RESIDUAL LIFE TIME AT GREAT AGE [J].
BALKEMA, AA ;
DEHAAN, L .
ANNALS OF PROBABILITY, 1974, 2 (05) :792-804
[2]  
Castillo E, 1997, J AM STAT ASSOC, V92, P1609
[3]  
DAVISON AC, 1990, J ROY STAT SOC B MET, V52, P393
[4]  
Embrechts P., 1997, MODELLING EXTREMAL E, DOI 10.1007/978-3-642-33483-2
[5]   PROBABILITY WEIGHTED MOMENTS - DEFINITION AND RELATION TO PARAMETERS OF SEVERAL DISTRIBUTIONS EXPRESSABLE IN INVERSE FORM [J].
GREENWOOD, JA ;
LANDWEHR, JM ;
MATALAS, NC ;
WALLIS, JR .
WATER RESOURCES RESEARCH, 1979, 15 (05) :1049-1054
[6]   PARAMETER AND QUANTILE ESTIMATION FOR THE GENERALIZED PARETO DISTRIBUTION [J].
HOSKING, JRM ;
WALLIS, JR .
TECHNOMETRICS, 1987, 29 (03) :339-349
[7]  
PICKANDS J, 1975, ANN STAT, V3, P119
[8]   Generalized probability weighted moments: Application to the generalized Pareto distribution [J].
Rasmussen, PF .
WATER RESOURCES RESEARCH, 2001, 37 (06) :1745-1751
[9]  
REISS RD, 1997, STATANAL EXTREME VAL
[10]   Linear combinations of order statistics to estimate the position and scale parameters of the Generalized Extreme Values distribution [J].
Salvadori, G .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2002, 16 (01) :18-42