Azimuth-Switched Quantization for SAR Systems and Performance Analysis on TanDEM-X Data

被引:17
|
作者
Martone, Michele [1 ]
Braeutigam, Benjamin [1 ]
Krieger, Gerhard [1 ]
机构
[1] German Aerosp Ctr DLR, Microwaves & Radar Inst, D-82234 Oberpfaffenhofen, Germany
关键词
Azimuth-switched quantization (ASQ); block adaptive quantization (BAQ); SAR interferometry (InSAR); synthetic aperture radar (SAR); TanDEM-X mission; BLOCK ADAPTIVE QUANTIZATION; MISSIONS;
D O I
10.1109/LGRS.2013.2251603
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In synthetic aperture radar (SAR) applications, raw data quantization represents an aspect of primary importance, since the number of bits employed for radar signal digitization on one hand affects the on-board memory consumption and the data volume to be transmitted to the ground, but also on the other hand affects the quality of the SAR images. In this letter, we introduce a novel azimuth-switched quantization technique, which allows the implementation of non-integer quantization rates in a new, efficient way. This grants higher flexibility in terms of performance design and resource allocation, without increasing the complexity and the computational load of the quantization scheme. The presented results were obtained in the frame of the TanDEM-X mission.
引用
收藏
页码:181 / 185
页数:5
相关论文
共 50 条
  • [31] COMBINING TANDEM-X AND LANDSAT 8 DATA FOR IMPROVED MAPPING OF FOREST BIOMASS
    Antropov, Oleg
    Rauste, Yrjo
    Hame, Tuomas
    Praks, Jaan
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3862 - 3865
  • [32] Potential of nonlocally filtered pursuit monostatic TanDEM-X data for coastline detection
    Schmitt, Michael
    Baier, Gerald
    Zhu, Xiao Xiang
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 148 : 130 - 141
  • [33] TECHNIQUES FOR HIGH ACCURACY RELATIVE AND ABSOLUTE LOCALIZATION OF TERRASAR-X/TANDEM-X DATA
    Balss, Ulrich
    Eineder, Michael
    Fritz, Thomas
    Breit, Helko
    Minet, Christian
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 2464 - 2467
  • [34] Large-Scale Biomass Classification in Boreal Forests With TanDEM-X Data
    Caicoya, Astor Torano
    Kugler, Florian
    Hajnsek, Irena
    Papathanassiou, Konstantinos P.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 5935 - 5951
  • [35] Predictive Quantization for Data Volume Reduction in Staggered SAR Systems
    Martone, Michele
    Gollin, Nicola
    Villano, Michelangelo
    Rizzoli, Paola
    Krieger, Gerhard
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5575 - 5587
  • [36] PERFORMANCE ANALYSIS OF AZIMUTH ELECTRONIC BEAM STEERING MODE SPACEBORNE SAR
    Han Xiaodong
    Xu Wei
    Han Xiaolei
    JournalofElectronics(China), 2013, 30 (03) : 213 - 221
  • [37] Effect of polarization orientation angle shift on X-band TDM SAR COSSC Product of TerraSAR-X and TanDEM-X
    Gupta, Asmita
    Kumar, Shashi
    Pandey, Uttara
    LAND SURFACE AND CRYOSPHERE REMOTE SENSING III, 2016, 9877
  • [38] Moving Ship Velocity Estimation Using TanDEM-X Data Based on Subaperture Decomposition
    Ao, Dongyang
    Datcu, Mihai
    Schwarz, Gottfried
    Hu, Cheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (10) : 1560 - 1564
  • [39] On the Estimation of Boreal Forest Biomass From TanDEM-X Data Without Training Samples
    Askne, Jan I. H.
    Santoro, Maurizio
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (04) : 771 - 775
  • [40] A Deep Learning Framework for the Estimation of Forest Height From Bistatic TanDEM-X Data
    Carcereri, Daniel
    Rizzoli, Paola
    Ienco, Dino
    Bruzzone, Lorenzo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 8334 - 8352