Force/Torque Sensor Calibration Method by Using Deep-Learning

被引:0
|
作者
Oh, Hyun Seok [1 ]
Kang, Gitae [1 ]
Kim, Uikyum [1 ]
Seo, Joon Kyue [1 ]
You, Won Suk [1 ]
Choi, Hyouk Ryeol [1 ]
机构
[1] Sungkyunkwan Univ, Sch Mech Engn, Suwon, South Korea
来源
2017 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI) | 2017年
关键词
Force/Torque; Sensors; Calibration; Deep Learning; Deep Neural Network; Coupling Effect;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The force/torque sensor is an important tool that gives a robot an ability to interact with their usage environments. Calibration is essential for these force/torque sensors to convert the raw sensor values to accurate forces and torques. However, in practice, the multi-axis force/torque sensor requires complex multi-step data processing, because of the coupling effects and nonlinearity of sensors. Moreover, accuracy is not guaranteed. To solve this problem, we propose an accurate force/torque sensor calibration method that can calibrate the sensor in single step by using deep-learning algorithm, and introduce the method for modeling the DNN(deep neural network) used in this calibration process. In addition, we also explain some tricks for learning, and then verify the calibration results through several experiments.
引用
收藏
页码:777 / 782
页数:6
相关论文
共 50 条
  • [21] Handwritten Character Recognition Using Deep-Learning
    Vaidya, Rohan
    Trivedi, Darshan
    Satra, Sagar
    Pimpale, Mrunalini
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 772 - 775
  • [22] Pornographic content classification using deep-learning
    Tabone, Andre
    Camilleri, Kenneth
    Bonnici, Alexandra
    Cristina, Stefania
    Farrugia, Reuben
    Borg, Mark
    PROCEEDINGS OF THE 21ST ACM SYMPOSIUM ON DOCUMENT ENGINEERING (DOCENG '21), 2021,
  • [23] Remaining useful life prediction for multi-sensor systems using a novel end-to-end deep-learning method
    Zhao, Yuyu
    Wang, Yuxiao
    MEASUREMENT, 2021, 182 (182)
  • [24] Manufacturing cost estimation based on a deep-learning method
    Ning, Fangwei
    Shi, Yan
    Cai, Maolin
    Xu, Weiqing
    Zhang, Xianzhi
    JOURNAL OF MANUFACTURING SYSTEMS, 2020, 54 : 186 - 195
  • [25] A Deep-learning based Method for the Classification of the Cellular Images
    Vununu, Caleb
    Lee, Suk-Hwan
    Kwon, Ki-Ryong
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 3: BIOINFORMATICS, 2020, : 242 - 245
  • [26] A New Deep-Learning Method for Human Activity Recognition
    Vrskova, Roberta
    Kamencay, Patrik
    Hudec, Robert
    Sykora, Peter
    SENSORS, 2023, 23 (05)
  • [27] A Spatiotemporal Deep-Learning Model for Force Estimation from Surface Electromyography
    Simon, Pierre-Emmanuel
    Peri, Elisabetta
    Long, Xi
    van Dijk, Johannes P.
    Mischi, Massimo
    2024 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS, MEMEA 2024, 2024,
  • [28] Deep-Learning Empowered Customized Chiral Metasurface for Calibration-Free Biosensing
    Zhang, Nan
    Gao, Feng
    Wang, Ride
    Shen, Zhonglei
    Han, Donghai
    Cui, Yuqing
    Zhang, Liuyang
    Chang, Chao
    Qiu, Cheng-wei
    Chen, Xuefeng
    ADVANCED MATERIALS, 2025, 37 (01)
  • [29] Crosstalk calibration for torque sensor using actual sensing frame
    Young-Loul Kim
    Jung-Jun Park
    Jae-Bok Song
    Journal of Mechanical Science and Technology, 2010, 24 : 1729 - 1735
  • [30] Decision tree-based blending method using deep-learning for network management
    Aouedi, Ons
    Piamrat, Kandaraj
    Parrein, Benoit
    PROCEEDINGS OF THE IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2022, 2022,