Multifractal analysis of mobility edge in a one-dimensional quasiperiodic system

被引:1
|
作者
Ananthakrishna, G
Zewdie, H
Thakur, PK
Brouers, F
机构
[1] UNIV ADDIS ABABA, DEPT CHEM, ADDIS ABABA, ETHIOPIA
[2] SAHA INST NUCL PHYS, CALCUTTA 700064, W BENGAL, INDIA
[3] UNIV LIEGE, INST PHYS, B-4000 LIEGE, BELGIUM
关键词
mobility edge; multifractal spectrum; quasiperiodic potential;
D O I
10.1016/S0960-8974(97)00008-9
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We consider a one dimensional discrete Schrodinger equation with a quasiperiodic potential which exhibits mobility edges, Using multifractal analysis we show that the states at the mobility edge have a stable multifractal spectrum. Further, we show that the transition from extended to localized states can be described by using the width of the multifractal spectrum as an order parameter.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 50 条
  • [31] Multifractal Distribution of Dendrite on One-Dimensional Support
    Miki, Hiroshi
    Honjo, Haruo
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2013, 82 (03)
  • [32] NOVEL TRANSITION BETWEEN CRITICAL AND LOCALIZED STATES IN A ONE-DIMENSIONAL QUASIPERIODIC SYSTEM
    KIM, YJ
    LEE, MH
    CHOI, MY
    PHYSICAL REVIEW B, 1989, 40 (04): : 2581 - 2584
  • [33] Absolute negative mobility in a one-dimensional overdamped system
    Chen, Ru-Yin
    Nie, Lin-Ru
    Pan, Wan-Li
    Zhang, Jian-Qiang
    PHYSICS LETTERS A, 2015, 379 (37) : 2169 - 2173
  • [34] MOBILITY EDGES IN A ONE-DIMENSIONAL SYSTEM WITH INCOMMENSURATE POTENTIALS
    LIU, YY
    RIKLUND, R
    CHAO, KA
    PHYSICAL REVIEW B, 1985, 32 (12): : 8387 - 8388
  • [35] Multifractal and multi-multifractal of one-dimensional expanding Markov maps
    Simpelaere, D
    ACTA APPLICANDAE MATHEMATICAE, 1999, 57 (02) : 133 - 164
  • [36] Multifractal and Multi-Multifractal of One-Dimensional Expanding Markov Maps
    Simpelaere, Dominique
    Acta Applicandae Mathematicae, 57 (02): : 133 - 164
  • [37] Multifractal and Multi-Multifractal of One-Dimensional Expanding Markov Maps
    Dominique Simpelaere
    Acta Applicandae Mathematica, 1999, 57 : 133 - 164
  • [38] On the statistics of binary alloys in one-dimensional quasiperiodic lattices
    Badalian, D
    Gasparian, V
    Khachatrian, A
    Ortuno, M
    Ruiz, J
    Cuevas, E
    PHYSICA B, 1996, 217 (1-2): : 127 - 132
  • [39] Subdiffusion of Dipolar Gas in One-Dimensional Quasiperiodic Potentials
    柏小东
    薛具奎
    Chinese Physics Letters, 2015, 32 (01) : 9 - 13
  • [40] SCALING AND EIGENSTATES FOR A CLASS OF ONE-DIMENSIONAL QUASIPERIODIC LATTICES
    GUMBS, G
    ALI, MK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (09): : L517 - L521