Multifractal analysis of mobility edge in a one-dimensional quasiperiodic system

被引:1
|
作者
Ananthakrishna, G
Zewdie, H
Thakur, PK
Brouers, F
机构
[1] UNIV ADDIS ABABA, DEPT CHEM, ADDIS ABABA, ETHIOPIA
[2] SAHA INST NUCL PHYS, CALCUTTA 700064, W BENGAL, INDIA
[3] UNIV LIEGE, INST PHYS, B-4000 LIEGE, BELGIUM
关键词
mobility edge; multifractal spectrum; quasiperiodic potential;
D O I
10.1016/S0960-8974(97)00008-9
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We consider a one dimensional discrete Schrodinger equation with a quasiperiodic potential which exhibits mobility edges, Using multifractal analysis we show that the states at the mobility edge have a stable multifractal spectrum. Further, we show that the transition from extended to localized states can be described by using the width of the multifractal spectrum as an order parameter.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 50 条
  • [21] ALGEBRAIC CONSTRUCTION OF ONE-DIMENSIONAL QUASIPERIODIC TILINGS
    LITVIN, DB
    JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (03) : 740 - 743
  • [22] Phonon localization in one-dimensional quasiperiodic chains
    Burkov, S. E.
    Koltenbah, B. E. C.
    Bruch, L. W.
    Physical Review B: Condensed Matter, 1996, 53 (21):
  • [23] Correlated fermions in a one-dimensional quasiperiodic potential
    Vidal, J
    Mouhanna, D
    Giamarchi, T
    PHYSICAL REVIEW LETTERS, 1999, 83 (19) : 3908 - 3911
  • [24] Phonon localization in one-dimensional quasiperiodic chains
    Burkov, SE
    Koltenbah, BEC
    Bruch, LW
    PHYSICAL REVIEW B, 1996, 53 (21): : 14179 - 14184
  • [25] Mechanism Analysis of One-Dimensional Quasiperiodic Groove Drag-Reduction
    Xue Wen-Hui
    Geng Xing-Guo
    Li Jie
    Li Feng
    Wu Jun
    CHINESE PHYSICS LETTERS, 2010, 27 (10)
  • [26] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
    蒋相平
    乔艺
    曹俊鹏
    Chinese Physics B, 2021, 30 (09) : 405 - 412
  • [27] Mobility edge and intermediate phase in one-dimensional incommensurate lattice potentials
    Li, Xiao
    Das Sarma, S.
    PHYSICAL REVIEW B, 2020, 101 (06)
  • [28] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
    Jiang, Xiang-Ping
    Qiao, Yi
    Cao, Jun-Peng
    CHINESE PHYSICS B, 2021, 30 (09)
  • [29] Generic mobility edges in several classes of duality-breaking one-dimensional quasiperiodic potentials
    Vu D.
    Das Sarma S.
    Physical Review B, 2023, 107 (22)
  • [30] Diffusion in one-dimensional multifractal porous media
    Lovejoy, S
    Schertzer, D
    Silas, P
    WATER RESOURCES RESEARCH, 1998, 34 (12) : 3283 - 3291