Multifractal analysis of mobility edge in a one-dimensional quasiperiodic system

被引:1
|
作者
Ananthakrishna, G
Zewdie, H
Thakur, PK
Brouers, F
机构
[1] UNIV ADDIS ABABA, DEPT CHEM, ADDIS ABABA, ETHIOPIA
[2] SAHA INST NUCL PHYS, CALCUTTA 700064, W BENGAL, INDIA
[3] UNIV LIEGE, INST PHYS, B-4000 LIEGE, BELGIUM
关键词
mobility edge; multifractal spectrum; quasiperiodic potential;
D O I
10.1016/S0960-8974(97)00008-9
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We consider a one dimensional discrete Schrodinger equation with a quasiperiodic potential which exhibits mobility edges, Using multifractal analysis we show that the states at the mobility edge have a stable multifractal spectrum. Further, we show that the transition from extended to localized states can be described by using the width of the multifractal spectrum as an order parameter.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 50 条
  • [1] Formation of nonlinear modes in one-dimensional quasiperiodic lattices with a mobility edge
    Zezyulin, Dmitry A.
    Alfimov, Georgy L.
    PHYSICAL REVIEW A, 2024, 110 (06)
  • [2] Nonequilibrium phase diagram of a one-dimensional quasiperiodic system with a single-particle mobility edge
    Purkayastha, Archak
    Dhar, Abhishek
    Kulkarni, Manas
    PHYSICAL REVIEW B, 2017, 96 (18)
  • [3] Single-Particle Mobility Edge in a One-Dimensional Quasiperiodic Optical Lattice
    Luschen, Henrik P.
    Scherg, Sebastian
    Kohlert, Thomas
    Schreiber, Michael
    Bordia, Pranjal
    Li, Xiao
    Das Sarma, S.
    Bloch, Immanuel
    PHYSICAL REVIEW LETTERS, 2018, 120 (16)
  • [4] Anomalous mobility edges in one-dimensional quasiperiodic models
    Liu, Tong
    Xia, Xu
    Longhi, Stefano
    Sanchez-Palencia, Laurent
    SCIPOST PHYSICS, 2022, 12 (01):
  • [5] MOBILITY EDGES AND MULTIFRACTAL PROPERTIES IN A ONE-DIMENSIONAL SYSTEM WITH 3 INCOMMENSURATE FREQUENCIES
    JOHANSSON, M
    RIKLUND, R
    PHYSICAL REVIEW B, 1990, 42 (13): : 8244 - 8254
  • [6] MAGNON PROPERTIES OF THE ONE-DIMENSIONAL QUASIPERIODIC SYSTEM
    YOU, JQ
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (33) : 5725 - 5730
  • [7] One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges
    Wang, Yucheng
    Xia, Xu
    Zhang, Long
    Yao, Hepeng
    Chen, Shu
    You, Jiangong
    Zhou, Qi
    Liu, Xiong-Jun
    PHYSICAL REVIEW LETTERS, 2020, 125 (19)
  • [8] MOBILITY EDGE IN A MODEL ONE-DIMENSIONAL POTENTIAL
    DASSARMA, S
    HE, S
    XIE, XC
    PHYSICAL REVIEW LETTERS, 1988, 61 (18) : 2144 - 2147
  • [9] MULTIFRACTAL ANALYSIS OF ONE-DIMENSIONAL BIASED WALKS
    Chen, Yufei
    Dai, Meifeng
    Wang, Xiaoqian
    Sun, Yu
    Su, Weiyi
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [10] Exactly Solvable Mobility Edges for Phonons in One-Dimensional Quasiperiodic Chains
    Hu, Yizhi
    Xu, Yong
    Yan, Kun
    Xiao, Wei-Hua
    Chen, Xiaobin
    NANO LETTERS, 2025, 25 (06) : 2219 - 2225