Electroanalysis at discrete arrays of gold nanowire electrodes

被引:24
作者
Dawson, Karen [1 ]
Baudequin, Marine [1 ]
Sassiat, Nicolas [1 ]
Quinn, Aidan J. [1 ]
O'Riordan, Alan [1 ]
机构
[1] Natl Univ Ireland Univ Coll Cork, Tyndall Natl Inst, Nanotechnol Grp, Cork, Ireland
基金
爱尔兰科学基金会;
关键词
Nanowire; Nanoelectrochemistry; Electroanalysis; Diffusion; Capacitance; NANOELECTRODE ARRAYS; PLATINUM-ELECTRODES; FABRICATION; MICROELECTRODES; TRANSPORT; BEHAVIOR; METAL;
D O I
10.1016/j.electacta.2012.09.105
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The development of reliable nanosensors offers a number of potential advantages in nanoscale analytical science. A hybrid electron beam-photolithography process was used to fabricate robust and reliable electrochemical nanowire array devices, with highly reproducible critical dimensions, 100 +/- 6 nm. Nanowire electrode arrays were designed to permit diffusional independence at each nanowire element in an array thereby maximising limiting currents for optimised electrochemical nanosensing. The electrochemical behaviour of discrete nanowire electrode arrays was investigated using cyclic voltammety in ferrocenemonocarboxylic acid. Single nanowire devices yielded highly reproducible steady-state sigmoidal waveforms, with typical currents of 179 +/- 16 pA. Higher steady-state currents were achieved at nanowire arrays, up to similar to 1.2 nA for arrays consisting of six nanowire elements. At low and intermediate scan rates, sigmoidal waveforms were observed for nanowire arrays indicating very fast mass transport. However, voltammetric behaviour consistent with semi-infinite linear diffusion was observed at higher scan rates confirming the presence of overlapping diffusion profiles between neighbouring nanowires within an array. The existence of diffusion overlap between neighbouring nanowire elements was further demonstrated by deviation of measured steady-state currents from estimates, becoming more pronounced with increasing numbers on nanowire elements in the array. Finally capacitive charging of the electrodes was explored, and were found to exhibit very low capacitance typically similar to 31 +/- 3 nF cm(-2) per device, three orders of magnitude less than that reported for conventional microelectrodes (similar to 20 mu F cm(-2)). (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 38 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]   Nanoelectrodes, nanoelectrode arrays and their applications [J].
Arrigan, DWM .
ANALYST, 2004, 129 (12) :1157-1165
[3]   A COMPARISON OF THE CHRONOAMPEROMETRIC RESPONSE AT INLAID AND RECESSED DISK MICROELECTRODES [J].
BOND, AM ;
LUSCOMBE, D ;
OLDHAM, KB ;
ZOSKI, CG .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1988, 249 (1-2) :1-14
[4]   The electrochemistry of gold: II the electrocatalytic behaviour of the metal in aqueous media [J].
Burke, LD ;
Nugent, PF .
GOLD BULLETIN, 1998, 31 (02) :39-50
[5]   Characteristics of nanoscopic Au band electrodes [J].
Caston, SL ;
McCarley, RL .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 529 (02) :124-134
[6]   Electroanalysis at Single Gold Nanowire Electrodes [J].
Dawson, Karen ;
Wahl, Amelie ;
Murphy, Richard ;
O'Riordan, Alan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (27) :14665-14673
[7]   Single on-chip gold nanowires for electrochemical biosensing of glucose [J].
Dawson, Karen ;
Baudequin, Marine ;
O'Riordan, Alan .
ANALYST, 2011, 136 (21) :4507-4513
[8]   Single Nanoskived Nanowires for Electrochemical Applications [J].
Dawson, Karen ;
Strutwolf, Joerg ;
Rodgers, Ken P. ;
Herzog, Gregoire ;
Arrigan, Damien W. M. ;
Quinn, Aidan J. ;
O'Riordan, Alan .
ANALYTICAL CHEMISTRY, 2011, 83 (14) :5535-5540
[9]   MICROELECTRODES - NEW DIMENSIONS IN ELECTROCHEMISTRY [J].
FORSTER, RJ .
CHEMICAL SOCIETY REVIEWS, 1994, 23 (04) :289-297
[10]   Mass Transport to Nanoelectrode Arrays and Limitations of the Diffusion Domain Approach: Theory and Experiment [J].
Godino, Neus ;
Borrise, Xavier ;
Xavier Munoz, Francesc ;
Javier del Campo, Francisco ;
Compton, Richard G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (25) :11119-11125