Slurry-Fabricable Li+-Conductive Polymeric Binders for Practical All-Solid-State Lithium-Ion Batteries Enabled by Solvate Ionic Liquids

被引:172
|
作者
Oh, Doe Yang [1 ,2 ]
Nam, Young Jin [1 ,2 ]
Park, Kern Ho [1 ]
Jung, Sung Hoo [1 ,2 ]
Kim, Kyu Tae [1 ]
Ha, A. Reum [1 ]
Jung, Yoon Seok [1 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[2] UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
binders; composite electrodes; solid electrolytes; solid-state batteries; super-concentrated electrolytes; SUPERCONCENTRATED ELECTROLYTES; SUPERIONIC CONDUCTOR; PERFORMANCE; ELECTRODES; STABILITY; CHALLENGES; TRANSPORT; MECHANISM; INSIGHTS; LI7P3S11;
D O I
10.1002/aenm.201802927
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For mass production of all-solid-state lithium-ion batteries (ASLBs) employing highly Li+ conductive and mechanically sinterable sulfide solid electrolytes (SEs), the wet-slurry process is imperative. Unfortunately, the poor chemical stability of sulfide SEs severely restrict available candidates for solvents and in turn polymeric binders. Moreover, the binders interrupt Li+-ionic contacts at interfaces, resulting in the below par electrochemical performance. In this work, a new scalable slurry fabrication protocol for sheet-type ASLB electrodes made of Li+-conductive polymeric binders is reported. The use of intermediatepolarity solvent (e.g., dibromomethane) for the slurry allows for accommodating Li6PS5Cl and solvate-ionic-liquid-based polymeric binders (NBR-Li(G3) TFSI, NBR: nitrile-butadiene rubber, G3: triethylene glycol dimethyl ether, LiTFSI: lithium bis(trifluoromethanesulfonyl) imide) together without suffering from undesirable side reactions or phase separation. The LiNi0.6Co0.2Mn0.2O2 and Li4Ti5O12 electrodes employing NBR-Li(G3) TFSI show high capacities of 174 and 160 mA h g(-1) at 30 degrees C, respectively, which are far superior to those using conventional NBR (144 and 76 mA h g(-1)). Moreover, high areal capacity of 7.4 mA h cm(-2) is highlighted for the LiNi0.7Co0.15Mn0.15O2 electrodes with ultrahigh mass loading of 45 mg cm(-2). The facilitated Li+-ionic contacts at interfaces paved by NBR-Li(G3) TFSI are evidenced by the complementary analysis from electrochemical and 7Li nuclear magnetic resonance measurements.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes
    Lago, Nerea
    Garcia-Calvo, Oihane
    Lopez del Amo, Juan Miguel
    Rojo, Teofilo
    Armand, Michel
    CHEMSUSCHEM, 2015, 8 (18) : 3039 - 3043
  • [42] Thin, Highly Ionic Conductive, and Mechanically Robust Frame-Based Solid Electrolyte Membrane for All-Solid-State Li Batteries
    Kim, Dohwan
    Lee, Hyobin
    Roh, Youngjoon
    Lee, Jongjun
    Song, Jihun
    Dzakpasu, Cyril Bubu
    Kang, Seok Hun
    Choi, Jaecheol
    Kim, Dong Hyeon
    Hah, Hoe Jin
    Cho, Kuk Young
    Lee, Young-Gi
    Lee, Yong Min
    ADVANCED ENERGY MATERIALS, 2024, 14 (02)
  • [43] Diagnosis of failure modes for all-solid-state Li-ion batteries enabled by three-electrode cells
    Nam, Young Jin
    Park, Kern Ho
    Oh, Dae Yang
    An, Woo Hyun
    Jung, Yoon Seok
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (30) : 14867 - 14875
  • [44] π-d conjugation regulates the cathode/electrolyte interface in all-solid-state lithium-ion batteries
    Zheng, Surong
    Yu, Shiwei
    Ullah, Zaka
    Liu, Lei
    Chen, Ledi
    Sun, Houliang
    Chen, Mingliang
    Liu, Liwei
    Li, Qi
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (07) : 3967 - 3976
  • [45] Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries
    Nolan, Adelaide M.
    Zhu, Yizhou
    He, Xingfeng
    Bai, Qiang
    Mo, Yifei
    JOULE, 2018, 2 (10) : 2016 - 2046
  • [46] A new approach for synthesizing bulk-type all-solid-state lithium-ion batteries
    He, Linchun
    Chen, Chao
    Kotobuki, Masashi
    Zheng, Feng
    Zhou, Henghui
    Lu, Li
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (16) : 9748 - 9760
  • [47] Improvements to the Overpotential of All-Solid-State Lithium-Ion Batteries during the Past Ten Years
    Oh, Pilgun
    Lee, Hyomyung
    Park, Seohyeon
    Cha, Hyungyeon
    Kim, Junhyeok
    Cho, Jaephil
    ADVANCED ENERGY MATERIALS, 2020, 10 (24)
  • [48] Low-cost iron trichloride cathode for all-solid-state lithium-ion batteries
    Liu, Zhantao
    Liu, Jue
    Zhao, Simin
    Xun, Sangni
    Byaruhanga, Paul
    Chen, Shuo
    Tang, Yuanzhi
    Zhu, Ting
    Chen, Hailong
    NATURE SUSTAINABILITY, 2024, 7 (11): : 1492 - 1500
  • [49] All-solid-state lithium-ion batteries based on self-supported titania nanotubes
    Plylahan, Nareerat
    Letiche, Manon
    Barr, Maissa Kenza Samy
    Djenizian, Thierry
    ELECTROCHEMISTRY COMMUNICATIONS, 2014, 43 : 121 - 124
  • [50] High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries
    Zhou, Qiongyu
    Li, Qinghui
    Liu, Songli
    Yin, Xin
    Huang, Bing
    Sheng, Minqi
    JOURNAL OF POWER SOURCES, 2021, 482