Slurry-Fabricable Li+-Conductive Polymeric Binders for Practical All-Solid-State Lithium-Ion Batteries Enabled by Solvate Ionic Liquids

被引:172
|
作者
Oh, Doe Yang [1 ,2 ]
Nam, Young Jin [1 ,2 ]
Park, Kern Ho [1 ]
Jung, Sung Hoo [1 ,2 ]
Kim, Kyu Tae [1 ]
Ha, A. Reum [1 ]
Jung, Yoon Seok [1 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 04763, South Korea
[2] UNIST, Sch Energy & Chem Engn, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
binders; composite electrodes; solid electrolytes; solid-state batteries; super-concentrated electrolytes; SUPERCONCENTRATED ELECTROLYTES; SUPERIONIC CONDUCTOR; PERFORMANCE; ELECTRODES; STABILITY; CHALLENGES; TRANSPORT; MECHANISM; INSIGHTS; LI7P3S11;
D O I
10.1002/aenm.201802927
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For mass production of all-solid-state lithium-ion batteries (ASLBs) employing highly Li+ conductive and mechanically sinterable sulfide solid electrolytes (SEs), the wet-slurry process is imperative. Unfortunately, the poor chemical stability of sulfide SEs severely restrict available candidates for solvents and in turn polymeric binders. Moreover, the binders interrupt Li+-ionic contacts at interfaces, resulting in the below par electrochemical performance. In this work, a new scalable slurry fabrication protocol for sheet-type ASLB electrodes made of Li+-conductive polymeric binders is reported. The use of intermediatepolarity solvent (e.g., dibromomethane) for the slurry allows for accommodating Li6PS5Cl and solvate-ionic-liquid-based polymeric binders (NBR-Li(G3) TFSI, NBR: nitrile-butadiene rubber, G3: triethylene glycol dimethyl ether, LiTFSI: lithium bis(trifluoromethanesulfonyl) imide) together without suffering from undesirable side reactions or phase separation. The LiNi0.6Co0.2Mn0.2O2 and Li4Ti5O12 electrodes employing NBR-Li(G3) TFSI show high capacities of 174 and 160 mA h g(-1) at 30 degrees C, respectively, which are far superior to those using conventional NBR (144 and 76 mA h g(-1)). Moreover, high areal capacity of 7.4 mA h cm(-2) is highlighted for the LiNi0.7Co0.15Mn0.15O2 electrodes with ultrahigh mass loading of 45 mg cm(-2). The facilitated Li+-ionic contacts at interfaces paved by NBR-Li(G3) TFSI are evidenced by the complementary analysis from electrochemical and 7Li nuclear magnetic resonance measurements.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Stimulating the electrostatic interactions in composite cathodes using a slurry-fabricable polar binder for practical all-solid-state batteries
    Jeong, Woo-Hyun
    Kim, Hyerim
    Kansara, Shivam
    Lee, Seungwon
    Agostini, Marco
    Kim, Kyungsu
    Hwang, Jang-Yeon
    Jung, Yun-Chae
    ENERGY STORAGE MATERIALS, 2024, 73
  • [2] Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk-Type All-Solid-State Lithium-Ion Batteries
    Oh, Dae Yang
    Nam, Young Jin
    Park, Kern Ho
    Jung, Sung Hoo
    Cho, Sung-Ju
    Kim, Yun Kyeong
    Lee, Young-Gi
    Lee, Sang-Young
    Jung, Yoon Seok
    ADVANCED ENERGY MATERIALS, 2015, 5 (22)
  • [3] Assessment of all-solid-state lithium-ion batteries
    Braun, P.
    Uhlmann, C.
    Weiss, M.
    Weber, A.
    Ivers-Tiffee, E.
    JOURNAL OF POWER SOURCES, 2018, 393 : 119 - 127
  • [4] Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries
    Jeong, Kihun
    Park, Sodam
    Lee, Sang-Young
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (05) : 1917 - 1935
  • [5] Mixed ion-electron conductive materials: A path to higher energy density all-solid-state lithium-ion batteries
    Kizilaslan, Abdulkadir
    Kizilaslan, Recep
    Miura, Akira
    Tadanaga, Kiyoharu
    NANO TODAY, 2025, 60
  • [6] Lithium nitridonickelate as anode coupled with argyrodite electrolyte for all-solid-state lithium-ion batteries
    Qu, Yaxin
    Mateos, Mickael
    Emery, Nicolas
    Cuevas, Fermin
    Mercier, Dimitri
    Zanna, Sandrine
    Agustin, Rios de Anda
    Meziani, Narimane
    Zhang, Junxian
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [7] Operando Characterization Techniques for All-Solid-State Lithium-Ion Batteries
    Strauss, Florian
    Kitsche, David
    Ma, Yuan
    Teo, Jun Hao
    Goonetilleke, Damian
    Janek, Juergen
    Bianchini, Matteo
    Brezesinski, Torsten
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (06):
  • [8] Review on solid electrolytes for all-solid-state lithium-ion batteries
    Zheng, Feng
    Kotobuki, Masashi
    Song, Shufeng
    Lai, Man On
    Lu, Li
    JOURNAL OF POWER SOURCES, 2018, 389 : 198 - 213
  • [9] Tactical hybrids of Li+-conductive dry polymer electrolytes with sulfide solid electrolytes: Toward practical all-solid-state batteries with wider temperature operability
    Oh, Dae Yang
    Kim, Kyu Tae
    Jung, Sung Hoo
    Kim, Dong Hyeon
    Jun, Seunggoo
    Jeoung, Sungeun
    Moon, Hoi Ri
    Jung, Yoon Seok
    MATERIALS TODAY, 2022, 53 : 7 - 15
  • [10] Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes
    Nam, Young Jin
    Oh, Dae Yang
    Jung, Sung Hoo
    Jung, Yoon Seok
    JOURNAL OF POWER SOURCES, 2018, 375 : 93 - 101