Measure of Surface Potential at the Aqueous-Oxide Nanoparticle Interface by XPS from a Liquid Microjet

被引:65
作者
Brown, Matthew. A. [1 ,2 ]
Redondo, Amaia Beloqui [1 ]
Sterrer, Martin [3 ]
Winter, Bernd [4 ,5 ]
Pacchioni, Gianfranco [6 ]
Abbas, Zareen [7 ]
van Bokhoven, Jeroen A. [1 ,2 ]
机构
[1] ETH, Inst Chem & Bioengn, CH-8093 Zurich, Switzerland
[2] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[3] MPG, Fritz Haber Inst, Dept Chem Phys, D-14195 Berlin, Germany
[4] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany
[5] BESSY, D-12489 Berlin, Germany
[6] Univ Milano Bicocca, Dipartimento Sci Mat, I-20125 Milan, Italy
[7] Univ Gothenburg, Dept Chem & Mol Biol, SE-41296 Gothenburg, Sweden
基金
欧洲研究理事会;
关键词
Colloid; amorphous silica; solid-liquid interface; surface chemistry; pH; binding energy shift; WATER INTERFACE; CHARGE DENSITY; IN-SITU; QUARTZ; PHOTOEMISSION; PARTICLES; MOLECULES; LEVEL; MODEL;
D O I
10.1021/nl402957y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We show that the surface potential at a water oxide nanoparticle (NP) interface, long considered an immeasurable direct quantity, can be measured by X-ray photoelectron spectroscopy (XPS) from a liquid microjet. This new method does not require a priori knowledge of the particles' surface structure or of the ion distribution throughout the electrical double layer for its interpretation and can be applied to any colloidal suspension independent of composition, particle size and shape, and solvent. We demonstrate the application for aqueous suspensions of 9 nm colloidal silica (SiO2) at pH 0.3 and 10.0, where the surface potential changes from positive to negative. The experimental results are compared with calculated surface potentials based on Guoy-Chapman theory and are shown to be in good agreement.
引用
收藏
页码:5403 / 5407
页数:5
相关论文
共 31 条
  • [1] Size-dependent surface charging of nanoparticles
    Abbas, Zareen
    Labbez, Christophe
    Nordholm, Sture
    Ahlberg, Elisabet
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (15) : 5715 - 5723
  • [2] [Anonymous], 2013, PHYS CHEM INTERFACES
  • [3] [Anonymous], 1979, CHEM SILICA SOLUBILI
  • [4] CORE-LEVEL BINDING-ENERGY SHIFTS DUE TO IONIC ADSORBATES
    BAGUS, PS
    PACCHIONI, G
    [J]. PHYSICAL REVIEW B, 1993, 48 (20): : 15262 - 15273
  • [5] Toward a comprehensive understanding of solid-state core-level XPS linewidths: Experimental and theoretical studies on the Si 2p and O 1s linewidths in silicates
    Bancroft, G. M.
    Nesbitt, H. W.
    Ho, R.
    Shaw, D. M.
    Tse, J. S.
    Biesinger, M. C.
    [J]. PHYSICAL REVIEW B, 2009, 80 (07)
  • [6] DETERMINATION OF THE CHARGE DENSITY OF SILICA SOLS
    BOLT, GH
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1957, 61 (09) : 1166 - 1169
  • [7] Effect of Surface Charge Density on the Affinity of Oxide Nanoparticles for the Vapor-Water Interface
    Brown, Matthew A.
    Duyckaerts, Nicolas
    Redondo, Amaia Beloqui
    Jordan, Inga
    Nolting, Frithjof
    Kleibert, Armin
    Ammann, Markus
    Woerner, Hans Jakob
    van Bokhoven, Jeroen A.
    Abbas, Zareen
    [J]. LANGMUIR, 2013, 29 (16) : 5023 - 5029
  • [8] In situ photoelectron spectroscopy at the liquid/nanoparticle interface
    Brown, Matthew A.
    Jordan, Inga
    Redondo, Amaia Beloqui
    Kleibert, Armin
    Woerner, Hans Jakob
    van Bokhoven, Jeroen A.
    [J]. SURFACE SCIENCE, 2013, 610 : 1 - 6
  • [9] Changes in the Silanol Protonation State Measured In Situ at the Silica-Aqueous Interface
    Brown, Matthew A.
    Huthwelker, Thomas
    Redondo, Amaia Beloqui
    Janousch, Markus
    Faubel, Manfred
    Arrell, Christopher A.
    Scarongella, Mariateresa
    Chergui, Majed
    van Bokhoven, Jeroen A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (02): : 231 - 235
  • [10] Electronic structure of sub-10 nm colloidal silica nanoparticles measured by in situ photoelectron spectroscopy at the aqueous-solid interface
    Brown, Matthew A.
    Seidel, Robert
    Thuermer, Stephan
    Faubel, Manfred
    Hemminger, John C.
    van Bokhoven, Jeroen A.
    Winter, Bernd
    Sterrer, Martin
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (28) : 12720 - 12723