Weighted proper orientations of trees and graphs of bounded treewidth

被引:8
作者
Araujo, Julio [1 ]
Sales, Claudia Linhares [2 ]
Sau, Ignasi [1 ,3 ]
Silva, Ana [1 ]
机构
[1] Univ Fed Ceara, Dept Matemat, Fortaleza, Ceara, Brazil
[2] Univ Fed Ceara, Dept Comp, Fortaleza, Ceara, Brazil
[3] Univ Montpellier, CNRS, LIRMM, Montpellier, France
关键词
Proper orientation number; Weighted proper orientation number; Minimum maximum indegree; Trees; Treewidth; Parameterized complexity; W[1]-hardness;
D O I
10.1016/j.tcs.2018.11.013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a simple graph G, a weight function w : E (G) -> N \ (0), and an orientation D of G, we define mu(-)(D) = max(vev(G)) w(D)(-)(v), where w(D)(-)(v) = Sigma(-)(mu is an element of ND)(v)w(uv). We say that D is a weighted proper orientation of G if w(D)(-)(u) not equal w(D)(-),(v) whenever u and v are adjacent. We introduce the parameter weighted proper orientation number of G, denoted by (X) over right arrow (G, w), which is the minimum, over all weighted proper orientations D of G, of mu(-) (D). When all the weights are equal to 1, this parameter is equal to the proper orientation number of G, which has been object of recent studies and whose determination is NP -hard in general, but polynomial -time solvable on trees. Here, we prove that the equivalent decision problem of the weighted proper orientation number (i.e., (X) over right arrow (G, w) <= k?) is (weakly) NP -complete on trees but can be solved by a pseudo -polynomial time algorithm whose running time depends on k. Furthermore, we present a dynamic programming algorithm to determine whether a general graph G on n vertices and treewidth at most tw satisfies (X) over right arrow (G, w) <= k, running in time O(2t(w2) . k(3tw) . tw n), and we complement this result by showing that the problem is W[11 -hard on general graphs parameterized by the treewidth of G, even if the weights are polynomial in n. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 19 条
  • [1] The complexity of the proper orientation number
    Ahadi, A.
    Dehghan, A.
    [J]. INFORMATION PROCESSING LETTERS, 2013, 113 (19-21) : 799 - 803
  • [2] On variations of the subset sum problem
    Alfonsin, JLR
    [J]. DISCRETE APPLIED MATHEMATICS, 1998, 81 (1-3) : 1 - 7
  • [3] [Anonymous], 1994, SPRINGER LECT NOTES
  • [4] On the proper orientation number of bipartite graphs
    Araujo, Julio
    Cohen, Nathann
    de Rezende, Susanna F.
    Havet, Frederic
    Moura, Phablo F. S.
    [J]. THEORETICAL COMPUTER SCIENCE, 2015, 566 : 59 - 75
  • [5] Graph classes and the complexity of the graph orientation minimizing the maximum weighted outdegree
    Asahiro, Yuichi
    Miyano, Eiji
    Ono, Hirotaka
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (07) : 498 - 508
  • [6] A ckn 5-APPROXIMATION ALGORITHM FOR TREEWIDTH
    Bodlaender, Hans L.
    Drange, Pal Gronas
    Dregi, Markus S.
    Fomin, Fedor V.
    Lokshtanov, Daniel
    Pilipczuk, Micha L.
    [J]. SIAM JOURNAL ON COMPUTING, 2016, 45 (02) : 317 - 378
  • [7] Bondy A., 2008, GRAPH THEORY
  • [8] Cygan Marek, 2015, Parameterized algorithms, DOI 10.1007/978-3-319-21275-3
  • [9] Downey Rodney G., 2013, TEXTS COMPUTER SCI, DOI DOI 10.1007/978-1-4471-5559-1
  • [10] Garey M. R., 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness