Lysosomal targeting of the ABC transporter TAPL is determined by membrane-localized charged residues

被引:17
作者
Graab, Philipp [1 ]
Bock, Christoph [1 ]
Weiss, Konstantin [1 ]
Hirth, Alexander [1 ]
Koller, Nicole [1 ]
Braner, Markus [1 ]
Jung, Jennifer [4 ]
Loehr, Frank [2 ,3 ]
Tampe, Robert [1 ]
Behrends, Christian [4 ,5 ]
Abele, Rupert [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Biochem, Bioctr, Max von Laue Str 9, D-60438 Frankfurt, Germany
[2] Goethe Univ Frankfurt, Inst Biophys Chem, Max von Laue Str 9, D-60438 Frankfurt, Germany
[3] Goethe Univ Frankfurt, Ctr Biomol Magnet Resonance, Max von Laue Str 9, D-60438 Frankfurt, Germany
[4] Goethe Univ Frankfurt, Sch Med, Inst Biochem 2, Theodor Stern Kai 7, D-60590 Frankfurt, Germany
[5] Ludwig Maximilians Univ Munchen, Munich Cluster Syst Neurol, Feodor Lynen Str 17, D-81377 Munich, Germany
关键词
ABC transporter; intracellular trafficking; lysosome; protein targeting; transmembrane domain; ATP-binding cassette subfamily B member 9 (ABCB9); polypeptide transporter; protein-protein interaction; TMD0; Yip1-interacting factor homolog B membrane-trafficking protein (YIF1B); CELL ANTIGEN RECEPTOR; INVARIANT CHAIN; CLASS-II; MEDIATED ENDOCYTOSIS; TRANSMEMBRANE DOMAIN; RISK-FACTOR; TRAFFICKING; COMPLEX; LAMP-1; TRANSLOCATION;
D O I
10.1074/jbc.RA118.007071
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The human lysosomal polypeptide ABC transporter TAPL (ABC subfamily B member 9, ABCB9) transports 6-59-amino-acid-long polypeptides from the cytosol into lysosomes. The subcellular localization of TAPL depends solely on its N-terminal transmembrane domain, TMD0, which lacks conventional targeting sequences. However, the intracellular route and the molecular mechanisms that control TAPL localization remain unclear. Here, we delineated the route of TAPL to lysosomes and investigated the determinants of single trafficking steps. By synchronizing trafficking events by a retention using selective hooks (RUSH) assay and visualizing individual intermediate steps through immunostaining and confocal microscopy, we demonstrate that TAPL takes the direct route to lysosomes. We further identified conserved charged residues within TMD0 transmembrane helices that are essential for individual steps of lysosomal targeting. Substitutions of these residues retained TAPL in the endoplasmic reticulum (ER) or Golgi. We also observed that for release from the ER, a salt bridge between Asp-17 and Arg-57 is essential. An interactome analysis revealed that Yip1-interacting factor homolog B membrane-trafficking protein (YIF1B) interacts with TAPL. We also found that YIF1B is involved in ER-to-Golgi trafficking and interacts with TMD0 of TAPL via its transmembrane domain and that this interaction strongly depends on the newly identified salt bridge within TMD0. These results expand our knowledge about lysosomal trafficking of TAPL and the general function of extra transmembrane domains of ABC transporters.
引用
收藏
页码:7308 / 7323
页数:16
相关论文
共 67 条
  • [1] EPITOPE MAPPING AND TOPOLOGY OF BACULOVIRUS-EXPRESSED HIV-1 GP160 DETERMINED WITH A PANEL OF MURINE MONOCLONAL-ANTIBODIES
    ABACIOGLU, YH
    FOUTS, TR
    LAMAN, JD
    CLAASSEN, E
    PINCUS, SH
    MOORE, JP
    ROBY, CA
    KAMINLEWIS, R
    LEWIS, GK
    [J]. AIDS RESEARCH AND HUMAN RETROVIRUSES, 1994, 10 (04) : 371 - 381
  • [2] ALCOVER A, 1990, J BIOL CHEM, V265, P4131
  • [3] Yif1B Is Involved in the Anterograde Traffic Pathway and the Golgi Architecture
    Alterio, Jeanine
    Masson, Justine
    Diaz, Jorge
    Chachlaki, Konstantina
    Salman, Haysam
    Areias, Julie
    Al Awabdh, Sana
    Emerit, Michel Boris
    Darmon, Michele
    [J]. TRAFFIC, 2015, 16 (09) : 978 - 993
  • [4] UniProt: the universal protein knowledgebase
    Bateman, Alex
    Martin, Maria Jesus
    O'Donovan, Claire
    Magrane, Michele
    Alpi, Emanuele
    Antunes, Ricardo
    Bely, Benoit
    Bingley, Mark
    Bonilla, Carlos
    Britto, Ramona
    Bursteinas, Borisas
    Bye-A-Jee, Hema
    Cowley, Andrew
    Da Silva, Alan
    De Giorgi, Maurizio
    Dogan, Tunca
    Fazzini, Francesco
    Castro, Leyla Garcia
    Figueira, Luis
    Garmiri, Penelope
    Georghiou, George
    Gonzalez, Daniel
    Hatton-Ellis, Emma
    Li, Weizhong
    Liu, Wudong
    Lopez, Rodrigo
    Luo, Jie
    Lussi, Yvonne
    MacDougall, Alistair
    Nightingale, Andrew
    Palka, Barbara
    Pichler, Klemens
    Poggioli, Diego
    Pundir, Sangya
    Pureza, Luis
    Qi, Guoying
    Rosanoff, Steven
    Saidi, Rabie
    Sawford, Tony
    Shypitsyna, Aleksandra
    Speretta, Elena
    Turner, Edward
    Tyagi, Nidhi
    Volynkin, Vladimir
    Wardell, Tony
    Warner, Kate
    Watkins, Xavier
    Zaru, Rossana
    Zellner, Hermann
    Xenarios, Ioannis
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D158 - D169
  • [5] Network organization of the human autophagy system
    Behrends, Christian
    Sowa, Mathew E.
    Gygi, Steven P.
    Harper, J. Wade
    [J]. NATURE, 2010, 466 (7302) : 68 - U84
  • [6] Structure of the human MHC-I peptide-loading complex
    Blees, Andreas
    Januliene, Dovile
    Hofmann, Tommy
    Koller, Nicole
    Schmidt, Carla
    Trowitzsch, Simon
    Moeller, Arne
    Tampe, Robert
    [J]. NATURE, 2017, 551 (7681) : 525 - +
  • [7] Assembly of the MHC I peptide-loading complex determined by a conserved ionic lock-switch
    Blees, Andreas
    Reichel, Katrin
    Trowitzsch, Simon
    Fisette, Olivier
    Bock, Christoph
    Abele, Rupert
    Hummer, Gerhard
    Schaefer, Lars V.
    Tampe, Robert
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [8] BLUMBERG RS, 1990, J BIOL CHEM, V265, P14036
  • [9] Structural and functional insights into the interaction and targeting hub TMD0 of the polypeptide transporter TAPL
    Bock, Christoph
    Loehr, Frank
    Tumulka, Franz
    Reichel, Katrin
    Wuerz, Julia
    Hummer, Gerhard
    Schaefer, Lars
    Tampe, Robert
    Joseph, Benesh
    Bernhard, Frank
    Doetsch, Volker
    Abele, Rupert
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [10] Boncompain G, 2012, NAT METHODS, V9, P493, DOI [10.1038/NMETH.1928, 10.1038/nmeth.1928]