Map-matching algorithm for large-scale low-frequency floating car data

被引:158
作者
Chen, Bi Yu [1 ]
Yuan, Hui [1 ,2 ]
Li, Qingquan [1 ,3 ]
Lam, William H. K. [4 ]
Shaw, Shih-Lung [1 ,5 ]
Yan, Ke [1 ,6 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[3] Shenzhen Univ, Shenzhen Key Lab Spatial Smart Sensing & Serv, Shenzhen, Peoples R China
[4] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
[5] Univ Tennessee, Dept Geog, Knoxville, TN 37996 USA
[6] Wuhan Univ, Int Sch Software, Wuhan 430079, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
mobile objects; mobility; map matching; NETWORKS;
D O I
10.1080/13658816.2013.816427
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large-scale global positioning system (GPS) positioning information of floating cars has been recognised as a major data source for many transportation applications. Mapping large-scale low-frequency floating car data (FCD) onto the road network is very challenging for traditional map-matching (MM) algorithms developed for in-vehicle navigation. In this paper, a multi-criteria dynamic programming map-matching (MDP-MM) algorithm is proposed for online matching FCD. In the proposed MDP-MM algorithm, the MDP technique is used to minimise the number of candidate routes maintained at each GPS point, while guaranteeing to determine the best matching route. In addition, several useful techniques are developed to improve running time of the shortest path calculation in the MM process. Case studies based on real FCD demonstrate the accuracy and computational performance of the MDP-MM algorithm. Results indicated that the MDP-MM algorithm is competitive with existing algorithms in both accuracy and computational performance.
引用
收藏
页码:22 / 38
页数:17
相关论文
共 42 条
[1]   Towards a framework for mining and analysing spatio-temporal datasets [J].
Bertolotto, M. ;
Di Martino, S. ;
Ferrucci, F. ;
Kechadi, T. .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2007, 21 (08) :895-906
[2]   Estimating Real-Time Traffic Carbon Dioxide Emissions Based on Intelligent Transportation System Technologies [J].
Chang, Xiaomeng ;
Chen, Bi Yu ;
Li, Qingquan ;
Cui, Xiaohui ;
Tang, Luliang ;
Liu, Cheng .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2013, 14 (01) :469-479
[3]  
Chen B.Y., 2013, ANN ASS AM GEOGRAPHE
[4]   Shortest Path Finding Problem in Stochastic Time-Dependent Road Networks With Stochastic First-In-First-Out Property [J].
Chen, Bi Yu ;
Lam, William H. K. ;
Li, Qingquan ;
Sumalee, Agachai ;
Yan, Ke .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2013, 14 (04) :1907-1917
[5]   Reliable Shortest Path Problems in Stochastic Time-Dependent Networks [J].
Chen, Bi Yu ;
Lam, William H. K. ;
Sumalee, Agachai ;
Li, Qingquan ;
Tam, Mei Lam .
JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 18 (02) :177-189
[6]   Finding Reliable Shortest Paths in Road Networks Under Uncertainty [J].
Chen, Bi Yu ;
Lam, William H. K. ;
Sumalee, Agachai ;
Li, Qingquan ;
Shao, Hu ;
Fang, Zhixiang .
NETWORKS & SPATIAL ECONOMICS, 2013, 13 (02) :123-148
[7]   Reliable shortest path finding in stochastic networks with spatial correlated link travel times [J].
Chen, Bi Yu ;
Lam, William H. K. ;
Sumalee, Agachai ;
Li, Zhi-lin .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2012, 26 (02) :365-386
[8]   An Integrated Map-Match Algorithm with Position Feedback and Shape-Based Mismatch Detection and Correction [J].
Chen, Wu ;
Li, Zhilin ;
Yu, Meng ;
Chen, Yongqi .
JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2008, 12 (04) :168-175
[9]   FIBONACCI HEAPS AND THEIR USES IN IMPROVED NETWORK OPTIMIZATION ALGORITHMS [J].
FREDMAN, ML ;
TARJAN, RE .
JOURNAL OF THE ACM, 1987, 34 (03) :596-615
[10]   Understanding individual human mobility patterns [J].
Gonzalez, Marta C. ;
Hidalgo, Cesar A. ;
Barabasi, Albert-Laszlo .
NATURE, 2008, 453 (7196) :779-782