On pitfalls in computing the geodetic number of a graph

被引:6
|
作者
Hansen, Pierre [1 ,2 ]
van Omme, Nikolaj [3 ,4 ]
机构
[1] Gerad, Montreal, PQ, Canada
[2] HEC Montreal, Montreal, PQ, Canada
[3] CRT, Montreal, PQ, Canada
[4] Ecole Polytech, Montreal, PQ H3C 3A7, Canada
关键词
Graph; Geodetic number; Maximal geodetic closure; Algorithm;
D O I
10.1007/s11590-006-0032-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a simple connected graph G = (V, E) the geodetic closure I[S] subset of V of a subset S of V is the union of all sets of nodes lying on some geodesic (or shortest path) joining a pair of nodes v(k), v(l) epsilon S. The geodetic number, denoted by g(G), is the smallest cardinality of a node set S* such that I[S*] = V. In "The geodetic number of a graph", [Harary et al. in Math. Comput. Model. 17: 89-95, 1993] propose an incorrect algorithm to find the geodetic number of a graph G. We provide counterexamples and show why the proposed approach must fail. We then develop a 0-1 integer programming model to find the geodetic number. Computational results are given.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 50 条
  • [41] The geodetic hop domination number of complementary prisms
    Anusha, D.
    John, J.
    Robin, S. Joseph
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (06)
  • [42] GEODETIC NUMBER VERSUS HULL NUMBER IN P3-CONVEXITY
    Centeno, C. C.
    Penso, L. D.
    Rautenbach, D.
    de SA, V. G. Pereira
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) : 717 - 731
  • [43] Survey of Geodetic Mapping Methods Geodetic Approaches to Mapping and the Relationship to Graph-Based SLAM
    Agarwal, Pratik
    Burgard, Wolfram
    Stachniss, Cyrill
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 2014, 21 (03) : 63 - 80
  • [44] Computing the diversity vectors of balls of a given graph
    Fedoryaeva, T., I
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 122 - 129
  • [45] Comment on "Analogies Between the Geodetic Number and the Steiner Number of Some Classes of Graphs"
    John, J.
    FILOMAT, 2023, 37 (02) : 585 - 589
  • [46] On the geodetic hull number of Pk-free graphs
    Dourado, Mitre C.
    Penso, Lucia D.
    Rautenbach, Dieter
    THEORETICAL COMPUTER SCIENCE, 2016, 640 : 52 - 60
  • [47] On the domination number of a graph
    Pruchnewski, A
    DISCRETE MATHEMATICS, 2002, 251 (1-3) : 129 - 136
  • [48] On the toll number of a graph
    Dravec, Tanja
    DISCRETE APPLIED MATHEMATICS, 2022, 321 : 250 - 257
  • [49] The Steiner number of a graph
    Chartrand, G
    Zhang, P
    DISCRETE MATHEMATICS, 2002, 242 (1-3) : 41 - 54
  • [50] The geodetic-dominating number of comb product graphs
    Fahrudin, Dimas Agus
    Saputro, Suhadi Wido
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2020, 8 (02) : 373 - 381