On pitfalls in computing the geodetic number of a graph

被引:6
|
作者
Hansen, Pierre [1 ,2 ]
van Omme, Nikolaj [3 ,4 ]
机构
[1] Gerad, Montreal, PQ, Canada
[2] HEC Montreal, Montreal, PQ, Canada
[3] CRT, Montreal, PQ, Canada
[4] Ecole Polytech, Montreal, PQ H3C 3A7, Canada
关键词
Graph; Geodetic number; Maximal geodetic closure; Algorithm;
D O I
10.1007/s11590-006-0032-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a simple connected graph G = (V, E) the geodetic closure I[S] subset of V of a subset S of V is the union of all sets of nodes lying on some geodesic (or shortest path) joining a pair of nodes v(k), v(l) epsilon S. The geodetic number, denoted by g(G), is the smallest cardinality of a node set S* such that I[S*] = V. In "The geodetic number of a graph", [Harary et al. in Math. Comput. Model. 17: 89-95, 1993] propose an incorrect algorithm to find the geodetic number of a graph G. We provide counterexamples and show why the proposed approach must fail. We then develop a 0-1 integer programming model to find the geodetic number. Computational results are given.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 50 条
  • [31] On bounds for the cutting number of a graph
    Mukwembi, Simon
    Hove-Musekwa, Senelani Dorothy
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2012, 43 (06): : 637 - 649
  • [32] A Binding Number Computation of Graph
    Han, Congying
    He, Guoping
    Duan, Hua
    Zhang, Xuping
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 4, PROCEEDINGS, 2008, : 285 - +
  • [33] THE GEODETIC DOMINATION NUMBER FOR THE PRODUCT OF GRAPHS
    Chellathurai, S. Robinson
    Vijaya, S. Padma
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (04) : 19 - 30
  • [34] Contraction-based method for computing a lower bound on the clique number of a graph
    Gueham, Assia
    Ait Haddadene, Hacene
    Nagih, Anass
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019), 2019, : 1758 - 1762
  • [35] Total Restrained Geodetic Number of Graphs
    Hossein Abdollahzadeh Ahangar
    Maryam Najimi
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 473 - 480
  • [36] Graphs with Large Total Geodetic Number
    Ahangar, Hossein Abdollahzadeh
    FILOMAT, 2017, 31 (13) : 4297 - 4304
  • [37] Total Restrained Geodetic Number of Graphs
    Ahangar, Hossein Abdollahzadeh
    Najimi, Maryam
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A2): : 473 - 480
  • [38] Restrained geodetic domination of edge subdivision graph
    Mulloor, John Joy
    Sangeetha, V.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (05)
  • [39] A note on the geodetic number and the Steiner number of AT-free graphs
    Hon, Wing-Kai
    Kloks, Ton
    Liu, Hsiang-Hsuan
    Wang, Hung-Lung
    Wang, Yue-Li
    THEORETICAL COMPUTER SCIENCE, 2021, 854 : 131 - 135
  • [40] PRODUCTS OF GEODESIC GRAPHS AND THE GEODETIC NUMBER OF PRODUCTS
    Soloff, Jake A.
    Marquez, Rommy A.
    Friedler, Louis M.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (01) : 35 - 42