On pitfalls in computing the geodetic number of a graph

被引:6
作者
Hansen, Pierre [1 ,2 ]
van Omme, Nikolaj [3 ,4 ]
机构
[1] Gerad, Montreal, PQ, Canada
[2] HEC Montreal, Montreal, PQ, Canada
[3] CRT, Montreal, PQ, Canada
[4] Ecole Polytech, Montreal, PQ H3C 3A7, Canada
关键词
Graph; Geodetic number; Maximal geodetic closure; Algorithm;
D O I
10.1007/s11590-006-0032-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a simple connected graph G = (V, E) the geodetic closure I[S] subset of V of a subset S of V is the union of all sets of nodes lying on some geodesic (or shortest path) joining a pair of nodes v(k), v(l) epsilon S. The geodetic number, denoted by g(G), is the smallest cardinality of a node set S* such that I[S*] = V. In "The geodetic number of a graph", [Harary et al. in Math. Comput. Model. 17: 89-95, 1993] propose an incorrect algorithm to find the geodetic number of a graph G. We provide counterexamples and show why the proposed approach must fail. We then develop a 0-1 integer programming model to find the geodetic number. Computational results are given.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 10 条
[1]   On the edge geodetic number of a graph [J].
Atici, M .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2003, 80 (07) :853-861
[2]   Geodesics in graphs, an extremal set problem, anti perfect hash families [J].
Atici, M ;
Vince, AA .
GRAPHS AND COMBINATORICS, 2002, 18 (03) :403-413
[3]   Computational complexity of geodetic set [J].
Atici, M .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (05) :587-591
[4]   Geodetic spectra of graphs [J].
Chang, GJ ;
Tong, LD ;
Wang, HT .
EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (03) :383-391
[5]   The geodetic number of an oriented graph [J].
Chartrand, G ;
Zhang, P .
EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (02) :181-189
[6]   On the geodetic number of a graph [J].
Chartrand, G ;
Harary, F ;
Zhang, P .
NETWORKS, 2002, 39 (01) :1-6
[7]   THE GEODETIC NUMBER OF A GRAPH [J].
HARARY, F ;
LOUKAKIS, E ;
TSOUROS, C .
MATHEMATICAL AND COMPUTER MODELLING, 1993, 17 (11) :89-95
[8]  
Harary F., 1990, Distance in Graphs
[9]   On the Steiner, geodetic and hull numbers of graphs [J].
Hernando, C ;
Jiang, T ;
Mora, M ;
Pelayo, IM ;
Seara, C .
DISCRETE MATHEMATICS, 2005, 293 (1-3) :139-154
[10]  
PELAYO I, 2003, CONVEXITY GRAPHS