Low-temperature H2S gas sensor based on spherical Ag3PO4-doped SnO2

被引:8
|
作者
Sun, Mojie [1 ]
Zhang, Zhenye [1 ]
Wang, Shijie [1 ]
Zhang, Shiyuan [1 ]
Wang, Ruiting [1 ]
Song, Xiaochen [2 ]
机构
[1] Northeast Elect Power Univ, Sch Chem Engn, Jilin 132012, Jilin, Peoples R China
[2] Northeast Elect Power Univ, Sch Mech Engn, Jilin 132012, Jilin, Peoples R China
关键词
ETHANOL-SENSING PROPERTIES; FACILE CONTROL; CO; PERFORMANCE; FTIR; H-2; NANOCOMPOSITES; SELECTIVITY; FABRICATION; ADSORPTION;
D O I
10.1039/d0nj03189e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An efficient method for detecting H2S gas at low temperatures using micrometer-sized spherical Ag3PO4-doped SnO(2)materials synthesized by hydrothermal and chemical precipitation methods is reported. The crystalline phase, defects, elemental composition, and morphology of the samples were characterized in detail using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The characterization results verified the spherical structures of Ag3PO4-doped SnO(2)materials. The performance analysis revealed that the proposed gas sensor has the advantages of low operating temperature (100 degrees C), high response value (118), and good selectivity. The excellent H2S gas sensing performance is attributed to the increased oxygen vacancy defects and facile electron transfer process in the conduction band. Overall, this study validates the potential of gas-sensitive sensors based on Ag3PO4-doped SnO(2)materials for practical applications.
引用
收藏
页码:15966 / 15974
页数:9
相关论文
共 50 条
  • [21] Room temperature solid electrolyte ozone sensor based on Ag-doped SnO2
    Wang, Shan
    Yang, Yang
    Li, Xin
    Wang, Tiantian
    Li, Jiaxian
    Shi, Gaofeng
    Wang, Guoying
    SENSORS AND ACTUATORS A-PHYSICAL, 2024, 365
  • [22] High-performance gas sensor based on Ag@SnO2-Co3O4 hollow nanocomposite for fast and highly selective H2S detection
    Qin, Yuxiang
    Zhang, Yizhe
    Lei, Jing
    Lei, Songyuan
    SENSORS AND ACTUATORS B-CHEMICAL, 2025, 428
  • [23] A gas sensor based on Ga-doped SnO2 porous microflowers for detecting formaldehyde at low temperature
    Du, Liting
    Li, Haiying
    Li, Shuo
    Liu, Li
    Li, Yu
    Xu, Suyan
    Gong, Yimin
    Cheng, Yali
    Zeng, Xiangan
    Lian, Qingcheng
    CHEMICAL PHYSICS LETTERS, 2018, 713 : 235 - 241
  • [24] Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature
    Patil, L. A.
    Patil, D. R.
    SENSORS AND ACTUATORS B-CHEMICAL, 2006, 120 (01): : 316 - 323
  • [25] Realization of a portable H2S sensing instrument based on SnO2 nanowires
    Nguyen Xuan Thai
    Nguyen Van Duy
    Chu Manh Hung
    Hugo Nguyen
    Tran Manh Hung
    Nguyen Van Hieu
    Nguyen Duc Hoa
    JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2020, 5 (01): : 40 - 47
  • [26] Fast response detection of H2S by CuO-doped SnO2 films prepared by electrodeposition and oxidization at low temperature
    Wang, Shulan
    Xiao, Yang
    Shi, Dongqi
    Liu, Hua Kun
    Dou, Shi Xue
    MATERIALS CHEMISTRY AND PHYSICS, 2011, 130 (03) : 1325 - 1328
  • [27] Low Temperature Tin Oxide (SnO2) Nanowire Gas Sensor
    Johari, Anima
    Bhatnagar, M. C.
    Rana, Vikas
    16TH INTERNATIONAL WORKSHOP ON PHYSICS OF SEMICONDUCTOR DEVICES, 2012, 8549
  • [28] Nanocatalyst (Pt, Ag and CuO) Doped SnO2 Thin Film Based Sensors for Low Temperature Detection of NO2 Gas
    Sonker, Rakesh Kumar
    Sharma, Anjali
    Tomar, Monika
    Yadav, B. C.
    Gupta, Vinay
    ADVANCED SCIENCE LETTERS, 2014, 20 (7-9) : 1374 - 1377
  • [29] CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection
    Wang, Liwei
    Kang, Yanfei
    Wang, Yao
    Zhu, Baolin
    Zhang, Shoumin
    Huang, Weiping
    Wang, Shurong
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2012, 32 (07): : 2079 - 2085
  • [30] Development of sensors based on CuO-doped SnO2 hollow spheres for ppb level H2S gas sensing
    He, Lifang
    Jia, Yong
    Meng, Fanli
    Li, Minqiang
    Liu, Jinhuai
    JOURNAL OF MATERIALS SCIENCE, 2009, 44 (16) : 4326 - 4333