The condition number of the Schur complement in domain decomposition

被引:47
作者
Brenner, SC [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
D O I
10.1007/s002110050446
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that for elliptic boundary value problems of order 2m the condition number of the Schur complement matrix that appears in nonoverlapping domain decomposition methods is of order d(-1)h(-2m+1), where d measures the diameters of the subdomains and h is the mesh size of the triangulation. The result holds for both conforming and nonconforming finite elements.
引用
收藏
页码:187 / 203
页数:17
相关论文
共 23 条
[1]  
ADINI A, 1961, 7337 NSF G
[2]  
[Anonymous], RAIRO R
[3]  
[Anonymous], RAIRO RAN R
[4]   TUBA FAMILY OF PLATE ELEMENTS FOR MATRIX DISP LACEMENT METHOD [J].
ARGYRIS, JH ;
FRIED, I ;
SCHARPF, DW .
AERONAUTICAL JOURNAL, 1968, 72 (692) :701-&
[5]   ITERATIVE METHODS FOR THE SOLUTION OF ELLIPTIC PROBLEMS ON REGIONS PARTITIONED INTO SUBSTRUCTURES [J].
BJORSTAD, PE ;
WIDLUND, OB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (06) :1097-1120
[6]  
Bogner F.K., 1965, P C MATR METH STRUCT
[7]  
Bramble J. H., 1970, SIAM J NUMER ANAL, V7, P113
[8]  
Brenner S. C., 2007, Texts Appl. Math., V15
[9]   A two-level additive Schwarz preconditioner for nonconforming plate elements [J].
Brenner, SC .
NUMERISCHE MATHEMATIK, 1996, 72 (04) :419-447
[10]   Two-level additive Schwarz preconditioners for nonconforming finite element methods [J].
Brenner, SC .
MATHEMATICS OF COMPUTATION, 1996, 65 (215) :897-921