Constants of the motion, universal time and the Hamilton-Jacobi function in general relativity

被引:1
作者
O'Hara, Paul [1 ]
机构
[1] NE Illinois Univ, Dept Math, Chicago, IL 60625 USA
来源
IARD 2012: 8TH BIENNIAL CONFERENCE ON CLASSICAL AND QUANTUM RELATIVISTIC DYNAMICS OF PARTICLES AND FIELDS | 2013年 / 437卷
关键词
D O I
10.1088/1742-6596/437/1/012007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In most text books of mechanics, Newton's laws or Hamilton's equations of motion are first written down and then solved based on initial conditions to determine the constants of the motions and to describe the trajectories of the particles. In this essay, we take a different starting point. We begin with the metrics of general relativity and show how they can be used to construct by inspection constants of motion, which can then be used to write down the equations of the trajectories. This will be achieved by deriving a Hamiltonian-Jacobi function from the metric and showing that its existence requires all of the above mentioned properties. The article concludes by showing that a consistent theory of such functions also requires the need for a universal measure of time which can be identified with the "worldtime" parameter, first introduced by Steuckelberg and later developed by Horwitz and Piron.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] The Hamilton-Jacobi equation of minimal time control
    Clarke, FH
    Nour, C
    JOURNAL OF CONVEX ANALYSIS, 2004, 11 (02) : 413 - 436
  • [22] Hamilton-Jacobi modelling of relative motion for formation flying
    Kolemen, E
    Kasdin, NJ
    Gurfil, P
    NEW TRENDS IN ASTRODYNAMICS AND APPLICATIONS, 2005, 1065 : 93 - 111
  • [23] Hamilton-Jacobi Multi-Time Reachability
    Doshi, Manan
    Bhabra, Manmeet
    Wiggert, Marius
    Tomlin, Claire J.
    Lermusiaux, Pierre F. J.
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 2443 - 2450
  • [24] Restoration of four-dimensional diffeomorphism covariance in canonical general relativity: An intrinsic Hamilton-Jacobi approach
    Salisbury, Donald
    Renn, Juergen
    Sundermeyer, Kurt
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (06):
  • [25] Large Time Asymptotics of Hamilton-Jacobi Equations
    DYNAMICAL AND GEOMETRIC ASPECTS OF HAMILTON-JACOBI AND LINEARIZED MONGE-AMPERE EQUATIONS, VIASM 2016, 2017, 2183 : 141 - 176
  • [26] Termination time of characteristics of Hamilton-Jacobi equations
    Li, Tian-Hong
    Li, Xing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (03): : 799 - 809
  • [27] Termination time of characteristics of Hamilton-Jacobi equations
    Tian-Hong Li
    Xing Li
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 799 - 809
  • [28] A universal Hamilton-Jacobi equation for second-order ODEs
    Prince, GE
    Aldridge, JE
    Byrnes, GB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (05): : 827 - 844
  • [29] A history of observables and Hamilton–Jacobi approaches to general relativity
    Donald Salisbury
    The European Physical Journal H, 2022, 47
  • [30] Viscosity solutions of general viscous Hamilton-Jacobi equations
    Armstrong, Scott N.
    Tran, Hung V.
    MATHEMATISCHE ANNALEN, 2015, 361 (3-4) : 647 - 687