Electrochemical hydrogen evolution of multi-walled carbon nanotube/micro-hybrid composite decorated with Ni nanoparticles as catalyst through electroless deposition process

被引:4
作者
Rahimi, Nazanin [1 ]
Doroodmand, Mohammad Mandi [2 ,3 ]
Sabbaghi, Samad [1 ,3 ]
Sheikhi, Mohammad Hossein [3 ]
机构
[1] Shiraz Univ, Shiraz 71454, Iran
[2] Shiraz Univ, Dept Chem, Coll Sci, Shiraz 71454, Iran
[3] Shiraz Univ, Nanotechnol Res Ctr, Shiraz 71454, Iran
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2013年 / 33卷 / 06期
关键词
Hydrogen evolution; nanotube-based composite; electrocatalytic effect; electroless deposition; STORAGE; ADSORPTION; PROGRESS; NICKEL; ALLOY;
D O I
10.1016/j.msec.2013.03.038
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Hydrogen evolution of multi-walled nanotube (MWCNT)/micro-hybrid polymer composite, decorated with Ni nanoparticles through electroless deposition process is studied by the electrochemical method. Cyclic voltammetry (CV) is utilized to clearly study the electrochemical hydrogen storage/evolution behavior of the composite through a potential window ranging from -1.60 to +0.60 V (vs. Ag/AgCl). Hydrogen adsorption/desorption peaks are positioned at -1.52 and -0.05 V. respectively. Chronoamperometry is also applied to estimate active surface area (0.145 m(2) g(-1)) of the composite as well as the diffusion coefficient (3.4 x 10(-11) m(2) s(-1)) of adsorbed hydrogen process. According to the chrono-charge/discharge technique, the capacity of fabricated Ni-MWCNT/micro-hybrid composite is estimated to be 2.98 wt.% during charging for a certain time (40 min). (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:3173 / 3179
页数:7
相关论文
共 40 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]   Nanoscale carbon material porosity effect on gas adsorption [J].
Beyaz, S. ;
Lamari, F. Darkrim ;
Weinberger, B. ;
Langlois, P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (01) :217-224
[3]   Bonding titanium on multi-walled carbon nanotubes for hydrogen storage: An electrochemical approach [J].
Brieno-Enriquez, K. M. ;
Ledesma-Garcia, J. ;
Perez-Bueno, J. J. ;
Godinez, Luis A. ;
Terrones, H. ;
Angeles-Chavez, C. .
MATERIALS CHEMISTRY AND PHYSICS, 2009, 115 (2-3) :521-525
[4]   Hydrogen adsorption in defective carbon nanotubes [J].
Chen, Chien-Hung ;
Huang, Chen-Chia .
SEPARATION AND PURIFICATION TECHNOLOGY, 2009, 65 (03) :305-310
[5]   Electroless preparation and tribological properties of Ni-P-Carbon nanotube composite coatings under lubricated condition [J].
Chen, WX ;
Tu, JP ;
Gan, HY ;
Xu, ZD ;
Wang, QG ;
Lee, JY ;
Liu, ZL ;
Zhang, XB .
SURFACE & COATINGS TECHNOLOGY, 2002, 160 (01) :68-73
[6]   Electrochemical hydrogen storage of carbon nanotubes and carbon nanofibers [J].
Chen, X ;
Zhang, Y ;
Gao, XP ;
Pan, GL ;
Jiang, XY ;
Qu, JQ ;
Wu, F ;
Yan, J ;
Song, DY .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (07) :743-748
[7]   Study on overpotential of the electrochemical hydrogen storage of multiwall carbon nanotubes [J].
Feng, Hui ;
Wei, Yingliang ;
Shao, Chen ;
Lai, Yutian ;
Feng, Shuo ;
Dong, Zhu .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (09) :1294-1298
[8]   Hydrogen storage in Pd-Ni doped defective carbon nanotubes through the formation of CHx (x=1, 2) [J].
Gao, Lizhen ;
Yoo, E. ;
Nakamura, Junji ;
Zhang, Weike ;
Chua, Hui Tong .
CARBON, 2010, 48 (11) :3250-3255
[9]   Aqueous salting-out effect of inorganic cations and anions on non-electrolytes [J].
Gorgenyi, Miklos ;
Dewulf, Jo ;
Van Langenhove, Herman ;
Heberger, Karoly .
CHEMOSPHERE, 2006, 65 (05) :802-810
[10]   Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen [J].
Grochala, W ;
Edwards, PP .
CHEMICAL REVIEWS, 2004, 104 (03) :1283-1315